486 research outputs found

    Relative capture efficiency of large and small Sherman live traps

    Full text link

    A New Acoustic Portal into the Odontocete Ear and Vibrational Analysis of the Tympanoperiotic Complex

    Get PDF
    Global concern over the possible deleterious effects of noise on marine organisms was catalyzed when toothed whales stranded and died in the presence of high intensity sound. The lack of knowledge about mechanisms of hearing in toothed whales prompted our group to study the anatomy and build a finite element model to simulate sound reception in odontocetes. The primary auditory pathway in toothed whales is an evolutionary novelty, compensating for the impedance mismatch experienced by whale ancestors as they moved from hearing in air to hearing in water. The mechanism by which high-frequency vibrations pass from the low density fats of the lower jaw into the dense bones of the auditory apparatus is a key to understanding odontocete hearing. Here we identify a new acoustic portal into the ear complex, the tympanoperiotic complex (TPC) and a plausible mechanism by which sound is transduced into the bony components. We reveal the intact anatomic geometry using CT scanning, and test functional preconceptions using finite element modeling and vibrational analysis. We show that the mandibular fat bodies bifurcate posteriorly, attaching to the TPC in two distinct locations. The smaller branch is an inconspicuous, previously undescribed channel, a cone-shaped fat body that fits into a thin-walled bony funnel just anterior to the sigmoid process of the TPC. The TPC also contains regions of thin translucent bone that define zones of differential flexibility, enabling the TPC to bend in response to sound pressure, thus providing a mechanism for vibrations to pass through the ossicular chain. The techniques used to discover the new acoustic portal in toothed whales, provide a means to decipher auditory filtering, beam formation, impedance matching, and transduction. These tools can also be used to address concerns about the potential deleterious effects of high-intensity sound in a broad spectrum of marine organisms, from whales to fish

    Negotiating networks of self-employed work: strategies of minority ethnic contractors

    Get PDF
    Within the increased flexible, contracted work in cities, employment is negotiated through network arrangements characterised by multiplicity, mobility and fluidity. For black and minority ethnic group members, this network labour becomes fraught as they negotiate both their own communities, which can be complex systems of conflicting networks, as well as non-BME networks which can be exclusionary. This discussion explores the networking experiences of BME individuals who are self-employed in portfolio work arrangements in Canada. The analysis draws from a theoretical frame of ‘racialisation’ (Mirchandani and Chan, 2007) to examine the social processes of continually constructing and positioning the Other as well as the self through representations in these networks. These positions and concomitant identities enroll BME workers in particular modes of social production, which order their roles and movement in the changing dynamics of material production in networked employment

    Simulating the effect of high-intensity sound on cetaceans: Modeling approach and a case study for Cuvier’s beaked whale ( Ziphius cavirostris

    Full text link
    A finite element model is formulated to study the steady-state vibration response of the anatomy of a whale (Cetacea) submerged in seawater. The anatomy was reconstructed from a combination of two-dimensional (2D) computed tomography (CT) scan images, identification of Hounsfield units with tissue types, and mapping of mechanical properties. A partial differential equation model describes the motion of the tissues within a Lagrangean framework. The computational model was applied to the study of the response of the tissues within the head of a neonate Cuvier's beaked whale Ziphius cavirostris. The characteristics of the sound stimulus was a continuous wave excitation at 3500 Hz and 180 dB re: 1 mu Pa received level, incident as a plane wave. We model the beaked whale tissues embedded within a volume of seawater. To account for the finite dimensions of the computational volume, we increased the damping for viscous shear stresses within the water volume, in an attempt to reduce the contribution of waves reflected from the boundaries of the computational box. The mechanical response of the tissues was simulated including: strain amplitude; dissipated power; and pressure. The tissues are not likely to suffer direct mechanical or thermal damage, within the range of parameters tested. (c) 2006 Acoustical Society of America

    Physical constraints of cultural evolution of dialects in killer whales

    Get PDF
    Data collection was supported by a variety of organizations, including the Russian Fund for the Fundamental Research (Grant No. 15-04-05540), the Rufford Small Grants Fund, Whale and Dolphin Conservation, the Fundação para a Ciência e a Tecnologia (Grant No. SFRH/BD/30303/2006), Russell Trust Award of the University of St. Andrews, the Office of Naval Research, the Icelandic Research Fund (i. Rannsóknasjóður), the National Geographic Society Science and Exploration Europe (Grant No. GEFNE65-12), Vancouver Aquarium Marine Science Centre, the Canadian Ministry of Fisheries and Oceans, and the North Gulf Oceanic Society.Odontocete sounds are produced by two pairs of phonic lips situated in soft nares below the blowhole; the right pair is larger and is more likely to produce clicks, while the left pair is more likely to produce whistles. This has important implications for the cultural evolution of delphinid sounds: the greater the physical constraints, the greater the probability of random convergence. In this paper the authors examine the call structure of eight killer whale populations to identify structural constraints and to determine if they are consistent among all populations. Constraints were especially pronounced in two-voiced calls. In the calls of all eight populations, the lower component of two-voiced (biphonic) calls was typically centered below 4 kHz, while the upper component was typically above that value. The lower component of two-voiced calls had a narrower frequency range than single-voiced calls in all populations. This may be because some single-voiced calls are homologous to the lower component, while others are homologous to the higher component of two-voiced calls. Physical constraints on the call structure reduce the possible variation and increase the probability of random convergence, producing similar calls in different populations.PostprintPeer reviewe

    An Integrated Ecosystem Approach for Assessing the Potential Role of Cultivated Bivalve Shells as Part of the Carbon Trading System

    Get PDF
    The role of bivalve mariculture in the CO2 cycle has been commonly evaluated as the balance between respiration, shell calcium carbonate sequestration and CO2 release during biogenic calcification. However, this approach neglects the ecosystem implications of cultivating bivalves at high densities, e.g. the impact on phytoplankton dynamics and benthic-pelagic coupling, which can significantly contribute to the CO2 cycle. Therefore, an ecosystem approach that accounts for the trophic interactions of bivalve aquaculture, including dissolved and particulate organic and inorganic carbon cycling, is needed to provide a rigorous assessment of the role of bivalve mariculture in the CO2 cycle. On the other hand, the discussion about the inclusion of shells of cultured bivalves into the carbon trading system should be framed within the context of ecosystem goods and services. Humans culture bivalves with the aim of producing food, not sequestering CO2 in their shells, therefore the main ecosystem good provided by bivalve aquaculture is meat production, and shells should be considered as by-products of this human activity. This reasoning provides justification for dividing up respired CO2 between meat and shell when constructing a specific bivalve CO2 budget for potential use of bivalve shells in the carbon trading system. Thus, an integrated ecosystem approach, as well as an understanding of the ecosystems goods and services of bivalve aquaculture, are 2 essential requisites for providing a reliable assessment of the role of bivalve shells in the CO2 cycle

    Alcohol use among university students in Sweden measured by an electronic screening instrument

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Electronic-based alcohol screening and brief interventions for university students with problem drinking behaviours forms an important means by which to identify risky drinkers.</p> <p>Methods</p> <p>In this study an e-SBI project was implemented to assess drinking patterns, and to provide personalised feedback about alcohol consumption and related health problems, to students in a Swedish university. In this study, third semester university students (n = 2858) from all faculties (colleges) at the University were invited to participate in e-SBI screenings. This study employed a randomised controlled trial, with respondents having a equal chance of being assigned to a limited, or full-feedback response.</p> <p>Results</p> <p>The study shows that high risk drinkers tend to underestimate their own consumption compared to others, and that these high risk drinkers experience more negative consequences after alcohol intake, than other respondents. There was a strong belief, for both high- and low-risk drinkers, that alcohol helped celebrations be more festive. This study also confirms findings from other study locations that while males drank more than females in our study population; females reached the same peak alcohol blood concentrations as males.</p> <p>Conclusion</p> <p>Obtaining clear and current information on drinking patterns demonstrated by university students can help public health officials, university administration, and local health care providers develop appropriate prevention and treatment strategies.</p

    Alien Planktonic Species in the Marine Realm: What Do They Mean for Ecosystem Services Provision?

    Get PDF
    Human well-being is significantly affected by the contributions provided by ecosystems, or ecosystem services. In this well-illustrated atlas, world-class experts identify and discuss key driving forces, trade-offs, and synergies of ecosystem services. Through interdisciplinary case studies varying across ecosystems and scales, this atlas narrows the knowledge gap between ecosystem services management and related fields of study. This atlas begins with conceptual background and proceeds to present drivers and their risks for ecosystems, their functions and services, and biodiversity. Trade-offs and synergies among ecosystem services and societal responses to the drivers and trade-offs are discussed. Sustainable land management and governance concepts are demonstrated throughout the atlas. Environmental scientists, practitioners and policy makers worldwide will appreciate the solutions and best practices identified throughout the chapters. Students of environmental sciences, socio-economics and landscape planning will find this atlas to be a valuable read, as well

    Soft network composite materials with deterministic and bio-inspired designs

    Get PDF
    Hard and soft structural composites found in biology provide inspiration for the design of advanced synthetic materials. Many examples of bio-inspired hard materials can be found in the literature; far less attention has been devoted to soft systems. Here we introduce deterministic routes to low-modulus thin film materials with stress/strain responses that can be tailored precisely to match the non-linear properties of biological tissues, with application opportunities that range from soft biomedical devices to constructs for tissue engineering. The approach combines a low-modulus matrix with an open, stretchable network as a structural reinforcement that can yield classes of composites with a wide range of desired mechanical responses, including anisotropic, spatially heterogeneous, hierarchical and self-similar designs. Demonstrative application examples in thin, skin-mounted electrophysiological sensors with mechanics precisely matched to the human epidermis and in soft, hydrogel-based vehicles for triggered drug release suggest their broad potential uses in biomedical devices. &amp;#169; 2015 Macmillan Publishers Limited. All rights reservedopen7

    Ribbon Crystals

    Get PDF
    A repetitive crystal-like pattern is spontaneously formed upon the twisting of straight ribbons. The pattern is akin to a tessellation with isosceles triangles, and it can easily be demonstrated with ribbons cut from an overhead transparency. We give a general description of developable ribbons using a ruled procedure where ribbons are uniquely described by two generating functions. This construction defines a differentiable frame, the ribbon frame, which does not have singular points, whereby we avoid the shortcomings of the Frenet-Serret frame. The observed spontaneous pattern is modeled using planar triangles and cylindrical arcs, and the ribbon structure is shown to arise from a maximization of the end-to-end length of the ribbon, i.e. from an optimal use of ribbon length. The phenomenon is discussed in the perspectives of incompatible intrinsic geometries and of the emergence of long-range order
    corecore