278 research outputs found

    Compact in-vacuum gamma-ray spectrometer for high-repetition rate PW-class laser-matter interaction

    Full text link
    With the advent of high repetition rate laser facilities, novel diagnostic tools compatible with these advanced specifications are in demand. This paper presents the design of an active gamma-ray spectrometer intended for these high repetition rate experiments, with particular emphasis on functionality within a PW level laser-plasma interaction chamber's extreme conditions. The spectrometer uses stacked scintillators to accommodate a broad range of gamma-ray energies, demonstrating its adaptability for various experimental setups. Additionally, it has been engineered to maintain compactness, electromagnetic pulse resistance, and ISO-5 cleanliness requirements while ensuring high sensitivity. The paper also outlines the unfolding process, to recover the gamma-ray spectrum from the spectrometer's captured image thanks to a calibration using a 60^{60}Co source

    A phylogenetic study to assess the link between biome specialization and diversification in swallowtail butterflies

    Get PDF
    The resource-use hypothesis, proposed by E.S. Vrba, states that habitat fragmentation caused by climatic oscillations would affect particularly biome specialists (species inhabiting only one biome), which might show higher speciation and extinction rates than biome generalists. If true, lineages would accumulate biome-specialist species. This effect would be particularly exacerbated for biomes located at the periphery of the global climatic conditions, namely, biomes that have high/low precipitation and high/low temperature such as rainforest (warm-humid), desert (warm-dry), steppe (cold-dry) and tundra (cold-humid). Here, we test these hypotheses in swallowtail butterflies, a clade with more than 570 species, covering all the continents but Antarctica, and all climatic conditions. Swallowtail butterflies are among the most studied insects, and they are a model group for evolutionary biology and ecology studies. Continental macroecological rules are normally tested using vertebrates, this means that there are fewer examples exploring terrestrial invertebrate patterns at global scale. Here, we compiled a large Geographic Information System database on swallowtail butterflies' distribution maps and used the most complete time-calibrated phylogeny to quantify diversification rates (DRs). In this paper, we aim to answer the following questions: (1) Are there more biome-specialist swallowtail butterflies than biome generalists? (2) Is DR related to biome specialization? (3) If so, do swallowtail butterflies inhabiting extreme biomes show higher DRs? (4) What is the effect of species distribution area? Our results showed that swallowtail family presents a great number of biome specialists which showed substantially higher DRs compared to generalists. We also found that biome specialists are unevenly distributed across biomes. Overall, our results are consistent with the resource-use hypothesis, species climatic niche and biome fragmentation as key factors promoting isolation

    ER stress regulates myeloid-derived suppressor cell fate through TRAIL-R–mediated apoptosis

    Get PDF
    Myeloid-derived suppressor cells (MDSCs) dampen the immune response thorough inhibition of T cell activation and proliferation and often are expanded in pathological conditions. Here, we studied the fate of MDSCs in cancer. Unexpectedly, MDSCs had lower viability and a shorter half-life in tumor-bearing mice compared with neutrophils and monocytes. The reduction of MDSC viability was due to increased apoptosis, which was mediated by increased expression of TNF-related apoptosis–induced ligand receptors (TRAIL-Rs) in these cells. Targeting TRAIL-Rs in naive mice did not affect myeloid cell populations, but it dramatically reduced the presence of MDSCs and improved immune responses in tumor-bearing mice. Treatment of myeloid cells with proinflammatory cytokines did not affect TRAIL-R expression; however, induction of ER stress in myeloid cells recapitulated changes in TRAIL-R expression observed in tumor-bearing hosts. The ER stress response was detected in MDSCs isolated from cancer patients and tumor-bearing mice, but not in control neutrophils or monocytes, and blockade of ER stress abrogated tumor-associated changes in TRAIL-Rs. Together, these data indicate that MDSC pathophysiology is linked to ER stress, which shortens the lifespan of these cells in the periphery and promotes expansion in BM. Furthermore, TRAIL-Rs can be considered as potential targets for selectively inhibiting MDSCs

    Phylogeny and Historical Biogeography of Asian Pterourus Butterflies (Lepidoptera: Papilionidae): A Case of Intercontinental Dispersal from North America to East Asia

    Get PDF
    The phylogenetic status of the well-known Asian butterflies often known as Agehana (a species group, often treated as a genus or a subgenus, within Papilio sensu lato) has long remained unresolved. Only two species are included, and one of them especially, Papilio maraho, is not only rare but near-threatened, being monophagous on its vulnerable hostplant, Sassafras randaiense (Lauraceae). Although the natural history and population conservation of “Agehana” has received much attention, the biogeographic origin of this group still remains enigmatic. To clarify these two questions, a total of 86 species representatives within Papilionidae were sampled, and four genes (concatenated length 3842 bp) were used to reconstruct their phylogenetic relationships and historical scenarios. Surprisingly, “Agehana” fell within the American Papilio subgenus Pterourus and not as previously suggested, phylogenetically close to the Asian Papilio subgenus Chilasa. We therefore formally synonymize Agehana with Pterourus. Dating and biogeographic analysis allow us to infer an intercontinental dispersal of an American ancestor of Asian Pterourus in the early Miocene, which was coincident with historical paleo-land bridge connections, resulting in the present “East Asia-America” disjunction distribution. We emphasize that species exchange between East Asia and America seems to be a quite frequent occurrence in butterflies during the Oligocene to Miocene climatic optima.© 2015 Wu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Genome-wide transcriptional analysis of salinity stressed japonica and indica rice genotypes during panicle initiation stage

    Get PDF
    Rice yield is most sensitive to salinity stress imposed during the panicle initiation (PI) stage. In this study, we have focused on physiological and transcriptional responses of four rice genotypes exposed to salinity stress during PI. The genotypes selected included a pair of indicas (IR63731 and IR29) and a pair of japonica (Agami and M103) rice subspecies with contrasting salt tolerance. Physiological characterization showed that tolerant genotypes maintained a much lower shoot Na(+) concentration relative to sensitive genotypes under salinity stress. Global gene expression analysis revealed a strikingly large number of genes which are induced by salinity stress in sensitive genotypes, IR29 and M103 relative to tolerant lines. We found 19 probe sets to be commonly induced in all four genotypes. We found several salinity modulated, ion homeostasis related genes from our analysis. We also studied the expression of SKC1, a cation transporter reported by others as a major source of variation in salt tolerance in rice. The transcript abundance of SKC1 did not change in response to salinity stress at PI stage in the shoot tissue of all four genotypes. However, we found the transcript abundance of SKC1 to be significantly higher in tolerant japonica Agami relative to sensitive japonica M103 under control and stressed conditions during PI stage. ELECTRONIC SUPPLEMENTARY MATERIAL: Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s11103-006-9112-0 and is accessible for authorized users

    The origin and speciation of orchids

    Get PDF
    SummaryOrchids constitute one of the most spectacular radiations of flowering plants. However, their origin, spread across the globe, and hotspots of speciation remain uncertain due to the lack of an up-to-date phylogeographic analysis.We present a new Orchidaceae phylogeny based on combined high-throughput and Sanger sequencing data, covering all five subfamilies, 17/22 tribes, 40/49 subtribes, 285/736 genera, and c. 7% (1921) of the 29 524 accepted species, and use it to infer geographic range evolution, diversity, and speciation patterns by adding curated geographical distributions from the World Checklist of Vascular Plants.The orchids' most recent common ancestor is inferred to have lived in Late Cretaceous Laurasia. The modern range of Apostasioideae, which comprises two genera with 16 species from India to northern Australia, is interpreted as relictual, similar to that of numerous other groups that went extinct at higher latitudes following the global climate cooling during the Oligocene. Despite their ancient origin, modern orchid species diversity mainly originated over the last 5 Ma, with the highest speciation rates in Panama and Costa Rica.These results alter our understanding of the geographic origin of orchids, previously proposed as Australian, and pinpoint Central America as a region of recent, explosive speciation

    Phenotypic and transcriptomic characterization of canine myeloid-derived suppressor cells

    Get PDF
    Myeloid-derived suppressor cells (MDSCs) are key players in immune evasion, tumor progression and metastasis. MDSCs accumulate under various pathological states and fall into two functionally and phenotypically distinct subsets that have been identified in humans and mice: polymorphonuclear (PMN)-MDSCs and monocytic (M)-MDSCs. As dogs are an excellent model for human tumor development and progression, we set out to identify PMN-MDSCs and M-MDSCs in clinical canine oncology patients. Canine hypodense MHC class II-CD5-CD21-CD11b+ cells can be subdivided into polymorphonuclear (CADO48A+CD14-) and monocytic (CADO48A-CD14+) MDSC subsets. The transcriptomic signatures of PMN-MDSCs and M-MDSCs are distinct, and moreover reveal a statistically significant similarity between canine and previously published human PMN-MDSC gene expression patterns. As in humans, peripheral blood frequencies of canine PMN-MDSCs and M-MDSCs are significantly higher in dogs with cancer compared to healthy control dogs (PMN-MDSCs: p < 0.001; M-MDSCs: p < 0.01). By leveraging the power of evolution, we also identified additional conserved genes in PMN-MDSCs of multiple species that may play a role in MDSC function. Our findings therefore validate the dog as a model for studying MDSCs in the context of cancer

    Congruence and diversity of butterfly-host plant associations at higher taxonomic levels

    Get PDF
    We aggregated data on butterfly-host plant associations from existing sources in order to address the following questions: (1) is there a general correlation between host diversity and butterfly species richness?, (2) has the evolution of host plant use followed consistent patterns across butterfly lineages?, (3) what is the common ancestral host plant for all butterfly lineages? The compilation included 44,148 records from 5,152 butterfly species (28.6% of worldwide species of Papilionoidea) and 1,193 genera (66.3%). The overwhelming majority of butterflies use angiosperms as host plants. Fabales is used by most species (1,007 spp.) from all seven butterfly families and most subfamilies, Poales is the second most frequently used order, but is mostly restricted to two species-rich subfamilies: Hesperiinae (56.5% of all Hesperiidae), and Satyrinae (42.6% of all Nymphalidae). We found a significant and strong correlation between host plant diversity and butterfly species richness. A global test for congruence (Parafit test) was sensitive to uncertainty in the butterfly cladogram, and suggests a mixed system with congruent associations between Papilionidae and magnoliids, Hesperiidae and monocots, and the remaining subfamilies with the eudicots (fabids and malvids), but also numerous random associations. The congruent associations are also recovered as the most probable ancestral states in each node using maximum likelihood methods. The shift from basal groups to eudicots appears to be more likely than the other way around, with the only exception being a Satyrine-clade within the Nymphalidae that feed on monocots. Our analysis contributes to the visualization of the complex pattern of interactions at superfamily level and provides a context to discuss the timing of changes in host plant utilization that might have promoted diversification in some butterfly lineages
    corecore