11 research outputs found

    Fitness Trade-Offs in the Evolution of Dihydrofolate Reductase and Drug Resistance in Plasmodium falciparum

    Get PDF
    Background: Patterns of emerging drug resistance reflect the underlying adaptive landscapes for specific drugs. In Plasmodium falciparum, the parasite that causes the most serious form of malaria, antifolate drugs inhibit the function of essential enzymes in the folate pathway. However, a handful of mutations in the gene coding for one such enzyme, dihydrofolate reductase, confer drug resistance. Understanding how evolution proceeds from drug susceptibility to drug resistance is critical if new antifolate treatments are to have sustained usefulness. Methodology/Principal Findings: We use a transgenic yeast expression system to build on previous studies that described the adaptive landscape for the antifolate drug pyrimethamine, and we describe the most likely evolutionary trajectories for the evolution of drug resistance to the antifolate chlorcycloguanil. We find that the adaptive landscape for chlorcycloguanil is multi-peaked, not all highly resistant alleles are equally accessible by evolution, and there are both commonalities and differences in adaptive landscapes for chlorcycloguanil and pyrimethamine. Conclusions/Significance: Our findings suggest that cross-resistance between drugs targeting the same enzyme reflect the fitness landscapes associated with each particular drug and the position of the genotype on both landscapes. The possibl

    Estrogen receptor-KRAB chimeras are potent ligand-dependent repressors of estrogen-regulated gene expression

    No full text
    As an approach to targeted repression of genes of interest, we describe the development of human estrogen receptor (ER) alpha-KRAB repressor domain chimeras that are potent ligand-dependent repressors of the transcription of estrogen response element (ERE)-containing promoters and analyze their mechanisms of action. Repression by the KRAB domain was dominant over transactivation mediated by ER AF1 and AF2. An ERE and an ER ligand (estrogen or antiestrogen) were required for repression. Studies with several promoters and cell lines demonstrated that the presence of EREs, rather than the capacity for estrogen induction, determines the potential for repression of a gene by the KRAB-ER alpha-KRAB (HERK) chimera. A single consensus ERE was sufficient for repression, but the KERK chimera was unable to suppress transcription from the imperfect ERE in the native pS2 promoter. We recently reported mutations that enhance binding of a steroid receptor DNA-binding domain to the ERE. Introducing these mutations into wild-type ER enhanced transactivation from the pS2 ERE. Insertion of these mutations into KERK created the novel repressor KERK-3M, which is a potent repressor of both ER-induced and basal transcription on a promoter containing the pS2 ERE. These modified ER-KRAB chimeras should prove useful as new tools for the functional analysis and repression of ER-regulated genes

    Compensatory Mutations Restore Fitness during the Evolution of Dihydrofolate Reductase

    Get PDF
    Whether a trade-off exists between robustness and evolvability is an important issue for protein evolution. Although traditional viewpoints have assumed that existing functions must be compromised by the evolution of novel activities, recent research has suggested that existing phenotypes can be robust to the evolution of novel protein functions. Enzymes that are targets of antibiotics that are competitive inhibitors must evolve decreased drug affinity while maintaining their function and sustaining growth. Utilizing a transgenic Saccharomyces cerevisiae model expressing the dihydrofolate reductase (DHFR) enzyme from the malarial parasite Plasmodium falciparum, we examine the robustness of growth rate to drug-resistance mutations. We assay the growth rate and resistance of all 48 combinations of 6 DHFR point mutations associated with increased drug resistance in field isolates of the parasite. We observe no consistent relationship between growth rate and resistance phenotypes among the DHFR alleles. The three evolutionary pathways that dominate DHFR evolution show that mutations with increased resistance can compensate for initial declines in growth rate from previously acquired mutations. In other words, resistance mutations that occur later in evolutionary trajectories can compensate for the fitness consequences of earlier mutations. Our results suggest that high levels of resistance may be selected for without necessarily jeopardizing overall fitness

    RanBPM, a Nuclear Protein That Interacts with and Regulates Transcriptional Activity of Androgen Receptor and Glucocorticoid Receptor

    Get PDF
    The androgen receptor (AR) is a ligand-dependent transcription factor that has an essential role in the normal growth, development, and maintenance of the prostate gland. The AR is part of a large family of steroid receptors that also includes the glucocorticoid, progesterone, and mineralocorticoid receptors. Steroid receptor family members share significant homology at their DNA and ligand-binding domains. However, these receptors exhibit a high degree of sequence variability at their NH2-terminal domain, which suggests the possibility of receptor-specific interactions with co-regulator proteins. Transcriptional co-regulators that interact with the AR may have a role in defining AR activity and may be involved in directing AR-specific responses. Here we have identified Ran-binding protein in the microtubule-organizing center (RanBPM) to be a novel AR-interacting protein by yeast two-hybrid assay and have confirmed this interaction by glutathione S-transferase- and His-tagged pull-down assays. In addition, transient overexpression of RanBPM in prostate cancer cell lines resulted in enhanced AR activity in a ligand-dependent fashion. Glucocorticoid receptor activity was also enhanced when RanBPM was overexpressed, whereas estrogen receptor activity remained unchanged. These data demonstrate that RanBPM interacts with steroid receptors to selectively modify their activity
    corecore