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Abstract

Whether a trade-off exists between robustness and evolvability is an important issue for 

protein evolution.  While traditional viewpoints have assumed that existing functions must be 

compromised by the evolution of novel activities, recent research has suggested that existing 

phenotypes can be robust to the evolution of novel protein functions.  Enzymes that are targets of 

antibiotics that are competitive inhibitors must evolve decreased drug affinity while maintaining 

their function and sustaining growth.  Utilizing a transgenic Saccharomyces cerevisiae model 

expressing the dihydrofolate reductase (DHFR) enzyme from the malarial parasite Plasmodium 

falciparum, we examine the robustness of growth rate to drug-resistance mutations.  We assay 

the growth rate and resistance of all 48 combinations of 6 DHFR point mutations associated with 

increased drug resistance in field isolates of the parasite. We observe no consistent relationship 

between growth and resistance phenotypes among the DHFR alleles.  The three evolutionary 

pathways that dominate DHFR evolution show that mutating with increased resistance can 

compensate for initial declines in growth rate from previously acquired mutations.  In other 

words, resistance mutations that occur later in evolutionary trajectories can compensate for the 

fitness consequences of earlier mutations.  Our results suggest that high levels of resistance may 

be selected for without necessarily jeopardizing overall fitness.



Introduction

In protein evolution, the development of a new function is often thought to necessitate the 

deterioration of an existing function (Kondrashov 2005). Such potential trade-offs would 

constrain protein evolution and slow the emergence of new protein functions.  However, recent 

research has suggested that proteins may be phenotypically robust and capable of evolving novel 

functions without compromising existing activities (Aharoni et al. 2005, Tawfik 2005, 

Khersonsky et al. 2006). 

Enzymes that are targeted by competitive inhibitors must evolve decreased affinity for 

the antibiotic while maintaining their initial catalytic ability(s).  For example, enzymes in human 

pathogens such as Streptococcus, Staphylococus, and HIV have evolved decreased antibiotic 

susceptibility via a series of point mutations while maintaining their original functions  (e.g. 

Laible et al. 1989, Hackbarth et al. 1995, Berkhout 1999).  However, sometimes such resistance 

mutations impose fitness costs, as in the case of a ribosomal protein in Salmonella (Björkman et 

al. 1998, Maisnier-Paitin et al. 2002, Maisnier-Paitin and Andersson 2004). In view of the 

antibiotic “warfare” among organisms that began long before the onset of anthropogenic drug 

pressure, antibiotic resistance is not only a threat to human health, but also raises fundamental 

evolutionary questions (e.g. Maplestone et al. 1992, Currie et al. 1999).

 In order to understand whether phenotypic tradeoffs exist and how they affect protein 

evolution, we chose a well-characterized enzyme whose evolution has been recently shaped by 

antibiotic pressure.  Dihydrofolate reductase (DHFR) plays an important role in the folate 

pathway, helping to provide cofactors for several important cellular reactions including DNA 

synthesis (Nirmalan et al. 2002).  In Plasmodium falciparum, the parasite responsible for the 

deadliest form of malaria, DHFR is the target of antifolate drugs, which represent inexpensive 



and potentially effective malarial therapies (Schlitzer 2007).  Increased use of antifolate drugs, 

particularly pyrimethamine, has selected for antifolate resistant DHFR alleles.  Several mutations 

at the DHFR locus of P. falciparum are now associated with high-level pyrimethamine resistance 

in field isolates (e.g. Sirawaraporn et al. 1997, Ekland and Fidlock 2007, Mita et al. 2007).

 Using a transgenic Saccharomyces cerevisiae model of P. falciparum antifolate resistance 

(Sibley and Macreadie 2001), we explored the mutational landscape of pyrimethamine resistance 

in DHFR.  We followed the combinatorial strategy of Weinreich et al. (2006) and constructed all 

48 combinations of 6 mutations at 5 amino acid sites.  Each of these mutations is associated with 

pyrimethamine resistance and has been observed in combination with one or more of the other 5 

mutations in malarial field isolates (Foote et al. 1990, Sirawaraporn et al. 1997). We observe a 

single fitness maximum which population genetic simulations suggest is most likely to be 

accessible by a small number of mutational paths. These pathways exhibit compensatory 

evolution: initial resistance-conferring mutations decrease growth rate, however their effects are 

quickly compensated for by subsequent mutations.  Our results suggest that high levels of 

resistance may be selected for without necessarily jeopardizing overall fitness.



Methods

Yeast Strain Construction

Carol Sibley of the University of Washington generously provided the GR7 shuttle 

vector, a derivative of the pRS314 yeast shuttle vector (Sikorski and Hieter 1989, Wooden et al. 

1997).   This vector contains the wild-type P. falciparum DHFR allele regulated by 600 base 

pairs from the promoter region of the S. cerevisiae DFR1 gene and by the 400 base pair 3' DFR1 

transcription and translation terminators. GR7 also includes the TRP1 yeast biosynthetic marker, 

and a yeast centromere sequence that maintains the plasmid at about one copy per cell (Hunt et 

al. 2005).

We constructed all 48 possible combinations of the 6 point mutations at 5 amino acid 

coding sites in DHFR (A16V, N51I, C59R, S108N/T, I164L) on the GR7 vector using the 

QuikChange Site-Directed Mutagenesis Kit (Stratagene, Cedar Creek TX).  The DHFR locus on 

each mutagenized plasmid was sequenced to verify the presence of the engineered mutations. 

 We used the S. cerevisiae strain TH5 (MATa leu2-3,112 trp1 ura3-52 dfr1::URA3 tup1; 

provided by Carol Sibley) to assay the level of pyrimethamine resistance conferred by each 

DHFR allele.  TH5 lacks DFR1, the yeast orthologue of the DHFR gene and, when not 

transformed with a functional DFR1 homolog, the strain requires media supplemented with 

100µg/mL deoxythymidine monophosphate (dTMP; Sigma-Alrich, St. Louis, MO) for growth.  

The tup1 mutation increases cellular permeability to dTMP (Wooden et al. 1997).  We 

transformed TH5 with each of the 48 alleles using the EZ Yeast Transformation Kit (Zymo, 

Orange CA), selecting for the presence of the GR7 vector on tryptophan dropout media (SC trp-) 

supplemented with 100µg/mL dTMP.



Minimum Inhibitory Concentrations

Minimum inhibitory concentrations (MICs) for pyrimethamine were determined using a 

solid plate assay.  For each biological replicate of each strain, a colony was picked into 3 ml 

unsupplemented liquid YPD.  After 48 hours, we measured optical density (OD600), and each 

strain was serially diluted to a final OD600 of 0.002 (~1.2x104 cells/ml).  Five µl of each diluted 

strain (~60 cells) was spotted on plates containing either ethanol (negative control) or increasing 

concentrations of pyrimethamine. We used two biological replicates each with four technical 

replicates for each strain. The minimum inhibitory concentration (MIC) for each replicate was 

defined as the lowest concentration of pyrimethamine to fully inhibit growth.

Strains were initially assayed using a log10 scale of pyrimethamine concentrations, 

ranging from 10-9 to 10-4 M. To further resolve MIC values among strains, we used additional 

pyrimethamine concentrations (2.5 x 10-a, 5 x 10-a, and 7.5 x 10-a between each set of 

concentrations 10-(a+1) and 10-a) for all strains with MIC values higher than 10-6 M.  The full MIC 

data set is listed in Supplementary Table S4.

 

Growth Rate Measurements

Following Joseph and Hall (2004), we measured the growth rate of each strain in the 

presence various concentrations of pyrimethamine (0 M, 10-8 M, 10-7 M, 10-6 M, 10-5 M, 10-4 M) 

using a Bioscreen C microbiological workstation (Thermo Labsystems). For each biological 

replicate, we picked a colony from a solid media plate and inoculated a 5 ml liquid YPD culture.  

After 48 hours of shaking incubation at 30˚C, cultures were diluted to an optical density (OD600) 

of 0.01, or approximately 6 * 104 cells/mL.  Aliquots of 200 µl were transferred to microtiter 



plates for growth in the Bioscreen, and the optical density (OD600) was measured every 15 

minutes for 3 days. For each of at least 2 biological replicates per strain, we assayed at least 4 

technical replicates in each concentration of pyrimethamine.  Using code written in R, we 

calculated least-squares linear regressions for log absorbance versus time for a 3.25-hour sliding 

window over the length of the growth curve.  Growth rates represent the maximum regression 

coefficient among all sliding windows over length of the growth curve.  Growth rates of each 

allele in the absence of pyrimethamine are depicted in Supplementary Table S2.

IC50 calculations

 For each strain, we fit the following logarithmic curve to our growth rate versus 

pyrimethamine concentration data:

€ 

Gi =
Ai

1+ e
bi −x
ci

         (1)

where Gi is the growth rate of strain i, Ai is the maximum growth rate in the absence of 

pyrimethamine, bi is the pyrimethamine concentration where Gi is half of Ai, ci is a scaling 

parameter determining the shape of the logistic regression, and x is the log10 of the 

pyrimethamine concentration.  IC50 values for each strain represent the value of bi from 

nonlinear least-squares regressions.  Regression code was written in R. 

We determined the correlation between our calculated IC50 values and our observed 

MICs (Spearman’s rank correlation: P = 5.895 * 10-11, Figure S1).  For three DHFR alleles 

(C59R/S108N/I164L, N51I/S108N/I164L, N51I/C59R/S108N/I164L), statistically significant 

IC50 values could not be determined from our logistic regressions because we did not observe a 



significant decrease in growth rate over the range of pyrimethamine concentrations.  For these 

cases, we fit a linear model (IC50~MIC) to our resistance data and used this model to predict the 

IC50 values of the missing strains.  The complete IC50 data set is presented in Supplementary 

Table S3.

Calculation of accessible evolutionary trajectories

 Following previously established methodology (Weinreich et al. 2006, DePristo et al. 

2007, Lozovsky et al. 2009), we used the allele-specific resistance (IC50) data to analyze the 

mutational trajectories that are accessible to DHFR evolution.  Under a model where selection 

acts to increase pyrimethamine resistance, we assumed that the time to fixation or loss of a newly  

arising mutation is much shorter than the time between mutations (“strong selection/weak 

mutation;” Gillespie 1984).  As alleles with a single mutation do not segregate long enough to 

experience a second mutation, this model considers evolutionary trajectories with only single, 

positive mutational steps (see Weinreich et al. 2006 for a detailed description).  Following 

DePristo et al. (2007), we consider all potential positively selected single mutant neighbors, 

including reversions of previously fixed mutations.  We consider only mutations that increase 

resistance, assuming that probabilities (and thus rates) of fixation will be much higher for such 

mutations than for neutral mutations or those that decrease resistance. 

Because each fixation event is statistically independent of those occurring previously, 

The probability of moving from the low fitness wild type (wt) to an allele of a higher fitness, 

dhfr*, via mutational intermediates a, b, and c is given, as in Weinreich et al. (2006), by



€ 

Pwt→dhfr* = Pwt→a ⋅ Pa→b ⋅ Pb→c ⋅ Pc→dhfr*  .    (1)

We used two methods for estimating the probability of fixation (Pi→j) of the single mutant 

neighbor, j, of current allele i.  Under equal fixation probability, we assume that all favorable 

alleles have an equal probability of fixation.  Algebraically,

 

€ 

Pi→ j =
1
Mi

+          (2)

where Mi+ is the set of all single mutant neighbors of positive selective value.  

Under correlated fixation probability, we follow the extreme value theorem based 

approach of Weinreich et al. (2006) based on Orr (2002). This model assumes a correlation 

between the size of the selective increase (in our case, drug resistance) and its fixation 

probability. In particular,

€ 

Pi→ j =

1
xx= rj

ri −1∑
1
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       (3)

where ri is the fitness rank (based on IC50 value) of all alleles regardless of mutational 

adjacency.

In order to account for the effects of genome-specific mutational bias in Plasmodium 

falciparum, we weight the probability of each potential fixation by its mutational frequency 

according to the following equation:



     (4)

where Pi→j is the equal or correlated transition probability as calculated above, and βi→j is the 

relative bias of the mutation necessary to produce allele j from allele i.  Daniel Neafsey (Broad 

Institute, Cambridge, MA) kindly provided a twelve-parameter mutation rate matrix based upon 

1073 intergenic SNPs in P. falciparum (see Table S3 in Lozovsky et al. 2009).  SNPs were 

identified using neighborhood quality standard (NQS) criteria.  Eligible SNPs had quality scores 

of at least Q20 for both alleles and did not occur in CpG dinucleotides.  The directionality of 

mutations was inferred based on simple parsimony with P. falciparum’s sister species, P. 

reichenowii.

 Probabilities of evolutionary trajectories and their corresponding confidence intervals 

were estimated using simulations run using PERL.  For each allele, we used the calculated IC50 

value and the corresponding standard error as the mean and standard deviation of a normal 

distribution defining the resistance distribution for each allele.  Using these IC50 distributions to 

probabilistically define mutational landscapes, we simulated 1000 mutational landscapes. We 

then simulated 1 million rounds of evolution on each landscape under both fixation models (see 

Lozovsky et al. 2009).  

Simulating landscapes and trajectories in this way allows the probability estimates to 

account for uncertainty in our resistance measurements.  As a result, many trajectories, regardless 

of their probability, occur on low-likelihood landscapes. We therefore report a set of consensus 

trajectories that occur on at least 85% of all landscapes.  Changing the percent of simulated 

landscapes on which a trajectory must occur only modestly changes the number of trajectories 



considered (95% threshold = 29; 85% threshold = 46; 50% threshold = 85).  However, it does not 

change the identity of the most frequent trajectories.

Mean trajectory probabilities (see Figure 3.3, Supplementary Table 3.S1) represent the 

mean frequency of each trajectory across the 1,000 simulated landscapes. Statistics were 

calculated using scripts written in R.



Results

 In order to understand how various mutational combinations may affect the ability of 

strains to grow, we analyzed the growth rates of different genotypes in the absence of the 

antifolate drug (Supplementary Figure S1, Supplementary Table S2). Among the 48 genotypes, 

19 demonstrated no observable growth in the absence of pyrimethamine; we consider these 

alleles to be nonfunctional even though some demonstrate in vitro activity toward dihydrofolate 

(e.g. A16V; see Sirawaraporn et al. 1997). The 29 functional alleles have relative growth rates 

between 71-104% of the wild type. Among the 6 single-mutant neighbors of the wild-type 

sequence, 5 have statistically significantly lower growth rates than the wild type (based on non-

overlapping 95% confidence intervals; but see 00100 in Supplementary Figure S1). Only C59R 

has a non-significantly different growth rate.  In the yeast system, the wild type allele appears to 

be a fitness peak in the absence of drug pressure.

We next analyzed the pyrimethamine resistance levels of the 29 functional alleles 

(Supplementary Figure S2, Supplementary Table S3).  We define resistance as the Inhibitory 

Concentration 50 (IC50), which is the concentration of drug needed to reduce the strain’s growth 

rate by half (see Materials and Methods).  Consistent with previous resistance data from parasite 

field isolates, the quadruple mutant N51I/C59R/S108N/I164L exhibits the highest resistance, and 

triple mutants C59R/S108N/I164L and N51I/C59R/S108N also exhibit high levels of resistance 

(Sirawaraporn et al. 1997). ).  Likewise, S108N confers the highest resistance among single 

mutations.

The individual mutations have remarkably different effects on resistance (Table 1).  For 

example, while S108N increases pyrimethamine resistance 128 fold, replacing Ala with Val at 

site 16 reduces resistance on the vast majority of genetic backgrounds.  Mutations also differ in 



their ability to restore functionality to a nonfunctional genetic background (see Rescues, Table 

1).

Overall, we observe no clear association between resistance level and growth rate (Figure 

1).  Correlation analysis between growth rate and resistance levels suggests these two phenotypes 

are independent (Pearson correlation: P= 0.7589). This lack of association suggests phenotypic 

robustness in DHFR evolution in the genetic background of S. cerevisiae.  Further, neither 

growth rate nor pyrimethamine resistance is a simple function of the number of mutations 

present in a DHFR allele (Supplementary Figure S4).  Regression analyses between the number 

of mutations and either phenotype failed to yield a significant relationship (growth rate: adjusted 

R2 = 0.001994, P = 0.313; IC50: adjusted R2 = 0.05281, P = 0.121).  Our data indicates that only 

specific combinations of mutations are beneficial to either growth rate or resistance and that 

interactions between mutations strongly affect phenotype.

 In order to understand the effect of this mutational landscape on DHFR evolution, we 

simulated the evolution of pyrimethamine resistance following previously established 

methodology (Weinreich et al. 2006, DePristo et al. 2007, Lozovsky et al. 2009, see Methods).  

Assuming that the time between mutations is much longer than the time for fixation or loss of 

new mutations (Gillespie 1984, Orr 2002), our simulations move step-by-step through the 

mutational landscape adding or removing a single mutation at each point along a mutational 

trajectory. Given the relative likelihood of fixing a neutral or deleterious mutation under the 

intense selective pressure of antibiotics, we consider only positively selected mutational steps. As 

it is unclear how the level of resistance to pyrimethamine corresponds to fitness, we use two 

models to predict the probability of mutational fixations.  The equal fixation model assumes that 

all favorable steps are equally likely, whereas the correlated fixation model assumes that a 



mutation’s probability of fixation is proportional to the magnitude of the increase in resistance 

(Weinreich et al. 2006).  To compensate for mutational bias in the P. falciparum genome, we 

weight the frequency of the occurrence of mutations by the P. falciparum-specific relative 

mutation rates (see Materials and Methods above, and Table S3 in Lozovsky et al. 2009).

 While we observe 46 selectively accessible mutational trajectories (i.e. those in which 

each step results in an increase in resistance), DHFR evolution is actually highly predictable and 

dominated by a handful of trajectories. The ten most likely evolutionary trajectories, depicted in 

Figure 2, are observed between 84% and 99% of the time (Figure 3).  Further, over 80% of our 

simulations fix S108N first (Supplementary Figure S5) and all trajectories end at the global 

resistance maximum, the quadruple mutant, N51I/C59R/S108N/I164L.  Additionally, while 

many functional genotypes containing A16V have higher pyrimethamine resistances than the 

wild type, this mutation is not visited in any of the most frequent trajectories.  Perhaps because 

of its extremely detrimental effect on native DHFR function (Sirawaraporn et al. 1997), we 

observe that A16V is only favorable on 3 of the possible 24 genetic backgrounds (Table 1).

 The three most likely evolutionary trajectories illustrate how resistance can evolve 

without necessarily compromising growth rate.  Figure 4 depicts the growth rate and resistance 

level of alleles at each mutational step in these pathways.  The right hand plots for each pathway 

demonstrate how resistance continuously increases at each step in these paths.  However, the left 

hand plots show that growth rate fluctuates along the path to higher resistance.  Linear regression 

models reveal that mutational step has no significant effect on growth rate over the course of 

these three trajectories (adjusted R2 < 0.05 and P > 0.35 for all three regressions).  In each 

trajectory, subsequent resistance increasing mutations quickly compensate for the growth rate 

effect of the initial fixation (S108N).





Discussion

We describe the growth rate and pyrimethamine resistance mutational landscapes of 

DHFR and find growth rate remarkably robust to mutations that increase resistance.  Correlation 

analyses and evolutionary simulations reveal that, in the yeast model system, resistance and 

growth rate phenotypes freely associate.  Because interactions between mutations seem to play a 

large role in determining both growth rate and resistance levels, the phenotype of alleles with 

multiple mutations is difficult to predict based on the phenotypic effects of the individual 

mutations alone

In general, there is a complex relationship between different DHFR genotypes’ in vitro 

biochemical properties and their organismal phenotypes.  For example, the pyrimethamine 

affinity (Ki) of the individual DHFR alleles does predict the level of resistance of each strain 

(Supplementary Figure S6; Pearson correlation: 0.89, P = 0.0001).  However, there are 

exceptions. Some mutations that increase pyrimethamine affinity (decrease Ki) still increase 

resistance (e.g. N51I and I164L; see Supplementary Figure S2 and Sirawaraporn et al. 1997). 

Even more surprisingly, there is no significant correlation between the native activity of different 

DHFR alleles and their growth rate (Supplementary Figure S6).  For example, while the activity 

(kcat/KM) of wild type and N51I/C59R/S108N alleles for dihydrofolate differ by nearly 40-fold, 

they grow at the same rate in the absence of pyrimethamine. The well-established concave 

relationship between fitness and enzyme activity for pathway enzymes may explain some of the 

absence of correlation (Hartl et al. 1985); however, this relationship cannot explain cases in 

which one allele has a higher activity but a lower growth rate than another (e.g., compare N51I 

with C59R/S108N; Figure 1, Sirawaraporn et al. 1997).  We hypothesize that these mutations 



affect other protein properties, including degradation, aggregation, and folding, which may also 

impact growth rate.

Previous research suggests that mode of binding between drug and target may dictate the 

tradeoff between resistance and native enzyme function (Berkhout et al. 1999, Tawfik 2005).  

Drugs that bind directly in the active site may impose greater tradeoffs than drugs that bind` 

external to the catalytic core (Berkhout 1999, Tawfik 2005).  Applying this model, antifolate 

drugs such as pyrimethamine, which bind directly in DHFR’s active site and interact with key 

residues involved in dihydrofolate binding (Yuvaniyama et al. 2003), should impose a strong 

tradeoff in the development of pyrimethamine resistance.  However, while the addition of these 

mutations significantly decreases the native enzyme activity toward dihydrofolate (Sirawaraporn 

et al. 1997), they do not have the same, consistent impact on growth rate.  In total, our data 

suggests that organismic fitness, as determined by growth rate, may be even more robust than 

biochemical parameters alone would indicate.

Despite the additional constraint of maintaining its native enzymatic function, DHFR’s 

evolutionary landscape is similar in one important aspect to that of β–lactamase (Weinreich et al. 

2006). As in Weinreich et al. (2006), our simulation results also suggest that protein evolution 

may be highly biased toward a small number of mutational trajectories.  In both cases, between 

two and four trajectories are likely to occur at least 50% of the time, independent of the fixation 

model used.  

Surprisingly, the DHFR landscape may be more accessible to natural selection than the 

β–lactamase landscape.  To make these landscapes comparable, we limit the mutational 

landscape to those mutations comprising the global fitness maximum (i.e. five for β–lactamase 



and four for DHFR).  Further, we consider mutational trajectories that are comprised solely of 

forward mutations as these may cover as much as 99% of the trajectory probability space 

(DePristo et al. 2007).  Weinreich et al. (2006) observe that 15% to 32.5% (18 to 39 of 120) of 

forward trajectories are accessible while we observe that 58% (14 of 24) of potential forward 

trajectories are accessible. The β–lactamase landscape appears more constrained even if the 

landscape is restricted to the four sites that are likely to fix first (9 of 24 or 37.5%).  As growth 

rate appears to be robust to mutations increasing resistance, our results suggest that the 

maintenance of an existing enzymatic function does not significantly impact the evolution of 

nonnative protein functions.

Our results from a yeast system for malarial DHFR are similar to those from a system 

developed for Escherichia coli (Chusacultanachai et al. 2002). As explored by Lozovsky et al. 

(2009), the favored evolutionary pathways in the E. coli system are congruent with those in yeast 

(heavy lines in Figure 2).  Like in the yeast system, the DHFR alleles in E. coli show no 

consistent correlation with growth rate in the absence of drug (P = 0.81). 

However, the two systems exhibit some notable differences. For example, the variance in 

growth rate among strains carrying the various DHFR alleles is ~10 times greater in E. coli than 

in yeast. The narrower range of growth rates is reflected in the smaller effects of individual 

replacements. In E. coli, replacing the triple mutant N51I/C59R/S108N with the quadruple 

mutant N51I/C59R/S108N/I164L reduces growth rate by about 40 percent, and replacing C59R/

S108N/I164L with quadruple mutant reduces it by about 32 percent. In yeast, by contrast, the 

former mutation reduces growth rate by only 14 percent (Figure 4C and D, Figure 4E and F), and 

the latter mutation has no detectable effect though the standard error bars are quite large (Figure 

4A and B). The general amelioration of the growth rate effects of the DHFR allele may reflect a 



lower requirement for DHFR activity in yeast relative to E. coli.  If it exists, this lower DHFR 

activity requirement may be due to generalized reasons in the metabolic economy of yeast, or it 

may be due to some specific enzyme such as a relative increase in the activity of GTP-

cyclohydrolase I, which in yeast is encoded in FOL2 (Nardese et al., 1996). This is the first 

enzyme in the biosynthetic pathway for folic acid, and in P. falciparum, Nair et al. (2008) have 

shown that copy-number polymorphisms can reduce the growth-rate effects of DHFR mutants.

Our results may lend insight into the evolution of P. falciparum DHFR in nature.  For 

example, while the vast majority of our constructed alleles are not observed in malarial field 

isolates, all of the alleles present in each of the three most likely mutational trajectories have 

been isolated from patients (Sirawaraporn et al. 1997).  We also confirm the importance of the 

S108N mutation, which has long been speculated to be the first mutation fixed in DHFR 

resistance evolution based predominantly on its biophysical importance (Sirawaraporn et al. 

1997, Yuvaniyama et al. 2003).  In light of the challenge of culturing and genetically 

manipulating the parasite itself, the use of this and other model systems may provide powerful 

insights into combating the threat of drug resistance in Plasmodium falciparum.

Negative tradeoffs between growth rate and resistance at drug targets provide hope in 

combating the evolution of antibiotic resistance.  If large negative tradeoffs exist, one might 

imagine restoring drug susceptibility by relaxing drug pressure (Andersson 2006).  However, 

upon the relaxation of drug pressure, resistance phenotypes are likely to be maintained while 

additional mutations compensate for their fitness consequences (Maisnier-Paitin et al. 2002, Nair 

et al. 2008).  Our results are consistent with these findings and show that resistance-conferring 

mutations themselves can compensate for the fitness consequences of initial mutations (Figure 

4).  Together, these results suggest that once initially selected for, drug resistant genotypes may 



remain at high frequencies in populations even in the absence of antibiotic pressure.  Resistance 

prevention may still provide the best strategies in combating antibiotic resistance (Palumbi 

2001).
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Figure 1.  A plot of resistance (IC50) versus growth rate in the absence of pyrimethamine for 

each of the 29 functional DHFR alleles.  No significant correlation exists between these two 

phenotypes (Pearson correlation: P = 0.7512).



Figure 2. Ten most frequent evolutionary pathways leading from the wild type to the quadruple 

mutant using the correlated fixation model.  According to our model, evolution of pyrimethamine 

resistance follows one of these 10 pathways nearly 99% of the time. Five digit numbers indicate 

allelic states at each evolutionary step where each digit corresponds to an amino acid site (from 

left to right: 16, 51, 59, 108, 164).  Wild type states are depicted as 0 while mutant states are 

depicted as 1 or 2 (site 108: S=0, N=1, T=2).  Bold arrows indicate the three most likely 

pathways and the thickest arrows depicting the most likely path.



Figure 3. Probability density function (pdf) for ten evolutionary pathways of greatest frequency.  

The solid line depicts the pdf based on equal fixation probabilities while the dashed line depicts 

the pdf from correlated fixation probability. Landscapes were simulated based upon IC50 data in 

Table S3.  Pathways are ranked according to mean frequency.  Error bars represent 95% 

confidence intervals.





Figure 4.  Growth rates (left) and resistance values (right) of alleles at each step in the three most 

likely evolutionary pathways.  Plots in the same row (A and B, C and D, E and F) display data 

from the same trajectory.  Alleles at each step in the mutational trajectories are displayed above 

the plots. Five digit numbers indicate allelic states at each evolutionary step where each digit 

corresponds to an amino acid site (from left to right: 16, 51, 59, 108, 164).  Wild type states are 

depicted as 0 while mutant states are depicted as 1 or 2 (site 108: S=0, N=1, T=2).    Rates 

represent growth in the absence of drug and are relative to the wild type growth rate.  Error bars 

represent 95% confidence intervals.



Table 1. Summary of mutational effects on pyrimethamine resistance (IC50).

 Alleles upon which the mutational effect is

Mutation Positivea Negativea Negligible Mean 

Proportional Increaseb Rescuesc

A16V 3 20 1

 0.28d 2

N51I 13 3 8

 1.45 2

C59R 12 1 11

 3.37 5

S108N 7 3 6

 128.72 0

S108T 12 2 2

 52.74 4

I164L 10 7 7

 2.51 3

a Based on non-overlapping IC50 95% confidence intervals.

b Does not include genetic backgrounds where the mutation is deleterious or those where the 

mutation rescues the ability to grow in unsupplemented YPD (see below).



c Number of genetic backgrounds where the presence of the mutation restores the ability to grow 

in unsupplemented YPD.

a Based on one genetic background (C59R + I164L).





Supplementary Figure S1. Relative growth rate for DHFR alleles.  19 of 48 alleles have no 

measurable growth in the absence of pyrimethamine and are not depicted.  Alleles are designated 

by code corresponding to the genotype of allele at each of the 5 amino acid sites.  0 indicates the 

wild type state where a 1 or 2 indicates a mutant state.  Sites are designated from left to right as 

follows: 16, 51, 59, 108 (1=S108N, 2 = S108T), 164.  The chart groups alleles together alleles 

with similar numbers of mutations. Error bars indicate 95% confidence intervals.





Supplementary Figure S2. Resistance measurements (Inhibitory concentration 50 values) for 29 

DHFR alleles with non-zero growth rates in unsupplemented YPD.  Alleles are designated as in 

Figure 1 and are grouped according to number of mutations.  Error bars indicate 95% confidence 

intervals as calculated from IC50 standard errors. 



Supplementary Figure S3. Correlation between IC50 values and median MIC values for DHFR 

alleles (Pearson correlation: P = 4.383x10-11). 



Supplementary Figure S4. Resistance and growth rate phenotypes as a function of the number 

mutations present in each of the 29 functional DHFR alleles.  P values shown indicate 

significance level of Spearman’s rank correlations.  Inclusion of data points representing the 19 

nonfunctional alleles does not affect the significance of the correlation (resistance: P = 0.93; 

growth rate: P = 0.12).



Supplementary Figure S5. Frequency of observing a pathway with a given starting mutation 

under the correlated fixation probability model.  Any given evolutionary pathway has over an 

80% chance of beginning with the S108N fixation. 



Supplementary Figure S6. Correlation between cellular and biochemical parameters.  Left: 

resistance (IC50) strongly correlates with binding affinity (Ki; Pearson correlation: P = 0.0001).  

Right: we observe no relationship between relative growth rate and DHFR activity (kcat/KM; 

Pearson correlation: P = 0.68). Kinetic data from Sirawiraporn et al. (1997).



Supplementary Table S1. Complete list of observed trajectories, their mean realization 

probability and their standard deviations (SD).

 Trajectorya Correlated Fixation (SD)

 Equal Fixation (SD)

00000 00010 00110 00111 01111 0.38864774 (0.171318377)

 0.139065694 (0.045363128)

00000 00010 00110 01110 01111 0.27074593 (0.160082718)

 0.106254998 (0.044355438)

00000 00010 01010 01110 01111 0.189791833 (0.040007198)

 0.271743332 (0.061614977)

00000 01000 01010 01110 01111 0.079975918 (0.013273888)

 0.128010183

 0.030355251

00000 00020 00010 00110 00111 01111 0.016516645 (0.008301096)

 0.02311604 (0.007519723)

00000 00020 00010 00110 01110 01111 0.011797008 (0.00791432)

 0.017664455 (0.007375537)

00000 00001 01001 01011 01111 0.008141736 (0.00174267)

 0.020511821 (0.002937899)

00000 00020 00010 01010 01110 01111 0.008027757 (0.002241096)

 0.045180634 (0.010239161)

00000 00100 00110 00111 01111 0.006926104 (0.003389162)

 0.045933575 (0.014961438)

00000 00100 00110 01110 01111 0.004857461 (0.003097629)

 0.03508894 (0.014646731)

00000 00001 00021 00121 00111 01111 0.004814334 (0.000990451)

 0.006327484 (0.000904467)

00000 00001 00101 00111 01111 0.002563139 (0.001308486)

 0.019689391 (0.00486)



00000 01000 01001 01011 01111 0.002396596 (0.000436389)

 0.013328362 (0.001579775)

00000 00001 01001 01011 01010 01110 01111 0.001653416 (0.000329423)

 0.026329258 (0.00650709)

00000 00001 00021 00121 01121 01111 0.000819277 (0.000538871)

 0.00235375 (0.001608579)

00000 01000 01001 01011 01010 01110 01111 0.000487163 (8.71E-05)

 0.017142423

 0.004073945

00000 00100 01100 01110 01111 0.000362569 (0.000126308)

 0.010866028 (0.003985112)

00000 00100 00101 00111 01111 0.000325176 (0.000101816)

 0.009479434 (0.001247647)

00000 00001 00021 00020 00010 00110 00111 01111 0.000316136 (0.000169316)

 0.003514894 (0.001241488)

00000 00001 00021 00020 00010 00110 01110 01111 0.000231112 (0.000169306)

 0.002676097 (0.001149997)

00000 00001 00101 00121 00111 01111 0.000171388 (8.73E-05)

 0.00207069 (0.000513102)

00000 00001 00021 00020 00010 01010 01110 01111 0.00015587 (6.02E-05)

 0.006851339 (0.001687122)

00000 00001 00101 10101 10121 00121 00111 01111 9.20E-05 (4.31E-05)

 0.005133802 (0.001276927)

00000 00001 00101 01101 01111 4.91E-05 (2.23E-05)

 0.002541424 (0.000664341)

00000 00001 00101 00121 01121 01111 2.88E-05 (2.32E-05)

 0.000778544 (0.000566009)

00000 00100 00101 00121 00111 01111 2.16E-05 (8.12E-06)

 0.000997285 (0.000135864)



00000 00001 00101 10101 10121 11121 01121 01111 2.04E-05 (1.17E-05)

 0.008092047 (0.005902088)

00000 00001 00101 10101 10121 00121 01121 01111 1.54E-05 (1.26E-05)

 0.001931447 (0.001408153)

00000 00100 01100 01000 01010 01110 01111 1.37E-05 (8.27E-06)

 0.009201777 (0.003962728)

00000 00100 00101 10101 10121 00121 00111 01111 1.26E-05 (5.94E-06)

 0.002474674 (0.000335251)

00000 00100 01100 01101 01111 7.84E-06 (4.00E-06)

 0.001521393 (0.000498001)

00000 00100 00101 01101 01111 6.55E-06 (3.43E-06)

 0.001224385 (0.000193639)

00000 00001 00101 01101 01121 01111 3.89E-06 (2.97E-06)

 0.000366587 (0.000267659)

00000 00100 00101 00121 01121 01111 3.79E-06 (3.52E-06)

 0.00037406 (0.000257987)

00000 00100 00101 10101 10121 11121 01121 01111 n.o.

 0.003880744 (0.002674073)

00000 00001 00101 01101 01001 01011 01010 01110 01111 n.o.

 0.001291951 (0.000428994)

00000 00100 01100 01000 01001 01011 01010 01110 01111 n.o.

 0.001233807 (0.000533438)

00000 00001 00101 01101 01001 01011 01111 n.o.

 0.001003871 (0.000261178)

00000 00100 01100 01000 01001 01011 01111 n.o.

 0.00095229 (0.000362137)

00000 00100 00101 10101 10121 00121 01121 01111 n.o.

 0.0009268 (0.000638005)

00000 00100 01100 01101 01001 01011 01010 01110 01111 n.o.

 0.00076847 (0.000289686)



00000 00100 00101 01101 01001 01011 01010 01110 01111 n.o.

 0.000622212 (0.000161266)

00000 00100 01100 01101 01001 01011 01111 n.o.

 0.000602881 (0.000199068)

00000 00100 00101 01101 01001 01011 01111 n.o.

 0.000483708 (7.63E-05)

00000 00100 01100 01101 01121 01111 n.o.

 0.000220762 (0.000176643)

00000 00100 00101 01101 01121 01111 n.o.

 0.000176257 (0.000122652)

aAlleles are designated by code corresponding to the genotype of allele at each of the 5 amino 

acid sites.  0 indicates the wild type state where a 1 or 2 indicates a mutant state.  Sites are 

designated from left to right as follows: 16, 51, 59, 108 (1=S108N, 2 = S108T), 164.

bNot observed.



Supplementary Table S2. Growth rate of 29 functional DHFR alleles in the absence of 

pyrimethamine. 

Allele Relative growth rate Standard Error

00000 0.000969794 3.71E-05

00001 0.000884475 9.08E-06

00010 0.000851618 1.35E-05

00020 0.000884462 1.14E-05

00021 0.000903857 2.07E-05

00100 0.000950368 1.99E-05

00101 0.000953728 1.14E-05

00110 0.000969172 1.86E-05

00120 0.000923846 1.77E-06

00111 0.000845918 5.11E-05

00121 0.000953019 1.63E-05

01000 0.000776222 2.42E-05

01001 0.000821543 4.13E-05

01010 0.000906315 2.33E-05

01011 0.000693783 5.65E-05

01021 0.000730816 1.53E-06

01100 0.000883164 3.53E-05

01101 0.000889632 3.08E-05

01110 0.001005913 1.10E-05



01111 0.000867504 3.17E-05

01121 0.000833688 8.17E-05

10020 0.000889515 5.10E-05

10101 0.000763795 4.45E-05

10120 0.000999062 2.95E-05

10121 0.000812232 6.95E-08

11020 0.000904206 5.88E-06

11100 0.000811488 5.01E-05

11120 0.000960132 2.11E-05

11121 0.000852969 4.10E-05



Supplementary Table S3. Inhibitory Concentration 50 (IC50) values for all 29 functional 

DHFR alleles.

Allele log10 (IC50) (M) Standard Error

00000 -6.286287875 0.052603864

00001 -5.811815501 0.01306476

00010 -4.238783454 0.014037526

00020 -4.48211461 0.026490422

00021 -4.612314599 0.012289668

00100 -6.045979852 0.035257835

00101 -5.774205882 0.019191452

00110 -3.732112289 0.024631581

00120 -3.777079714 0.051763537

00111 -3.55 0.033087565

00121 -4.14270295 0.011584965

01000 -5.723515651 0.028592668

01001 -5.490538213 0.029968476

01010 -4.015207365 0.017167894

01011 -4.6 0.033087565

01021 -3.816615387 0.021366234

01100 -5.77259696 0.027573359

01101 -5.624057326 0.034434229

01110 -3.587469416 0.116303605

01111 -3.3 0.033087565



01121 -3.839352219 0.062476174

10020 -5.915408591 0.033490392

10101 -5.668197909 0.032062366

10120 -5.89185912 0.037337574

10121 -4.822049854 0.016719358

11020 -5.55226339 0.027819595

11100 -6.171380353 0.076834

11120 -5.345615847 0.019982089

11121 -4.655746831 0.017233065



Supplementary Table S4. Median Minimum Inhibitory Concentrations (MIC) for each allele, 

as determined by solid plate assay. 

Allele MIC (M) Standard Deviation

00000 1.00E-07 1.43E-07

00001 2.50E-07 1.24E-07

00010 2.50E-05 8.84E-06

00020 2.50E-06 1.44E-06

00021 8.75E-06 8.98E-06

00100 2.50E-07 1.54E-07

00101 7.50E-07 1.16E-07

00110 2.00E-04 4.63E-05

00111 2.00E-04 1.125E-04

00120 2.000E-04 1.27E-04

00121 2.500E-05 1.34E-05

01000 5.000E-07 1.34E-07

01001 1.000E-06 7.5E-07

01010 5.000E-05 1.16E-05

01011 1.000E-05 1.71E-13

01021 4.250E-06 4.60E-06

01100 1.000E-06 6.94E-07

01101 1.000E-06 7.75E-07

01110 2.000E-04 5.53E-05

01111 4.000E-04 2.24E-04



01121 2.000E-04 4.88E-05

10020 5.500E-08 4.81E-08

10101 5.500E-08 4.84E-07

10110 5.000E-10 7.07E-10

10120 6.250E-07 3.81E-07

10121 2.500E-06 1.66E-06

11020 7.500E-07 3.79E-07

11100 5.050E-07 5.74E-07

11120 5.500E-07 6.36E-07

11121 1.000E-05 9.75E-06


