1,672 research outputs found

    Biot-Savart-like law in electrostatics

    Get PDF
    The Biot-Savart law is a well-known and powerful theoretical tool used to calculate magnetic fields due to currents in magnetostatics. We extend the range of applicability and the formal structure of the Biot-Savart law to electrostatics by deriving a Biot-Savart-like law suitable for calculating electric fields. We show that, under certain circumstances, the traditional Dirichlet problem can be mapped onto a much simpler Biot-Savart-like problem. We find an integral expression for the electric field due to an arbitrarily shaped, planar region kept at a fixed electric potential, in an otherwise grounded plane. As a by-product we present a very simple formula to compute the field produced in the plane defined by such a region. We illustrate the usefulness of our approach by calculating the electric field produced by planar regions of a few nontrivial shapes.Comment: 14 pages, 6 figures, RevTex, accepted for publication in the European Journal of Physic

    A prospective cohort study of the effects of adjuvant breast cancer chemotherapy on taste function, food liking, appetite and associated nutritional outcomes

    Get PDF
    \u27Taste\u27 changes are commonly reported during chemotherapy. It is unclear to what extent this relates to actual changes in taste function or to changes in appetite and food liking and how these changes affect dietary intake and nutritional status

    Halofuginone inhibits the establishment and progression of melanoma bone metastases

    Get PDF
    Transforming growth factor (TGF-β) derived from bone fuels melanoma bone metastases by inducing tumor secretion of pro-metastatic factors that act on bone cells to change the skeletal microenvironment. Halofuginone is a plant alkaloid derivative that blocks TGF-β signaling with antiangiogenic and antiproliferative properties. Here, we demonstrate for the first time that halofuginone therapy decreases development and progression of bone metastasis caused by melanoma cells through inhibition of TGF-β signaling. Halofuginone treatment of human melanoma cells inhibited cell proliferation, phosphorylation of SMAD proteins in response to TGF-β, and TGF-β-induced SMAD-driven transcription. In addition, halofuginone reduced expression of TGF-β target genes that enhance bone metastases, including PTHrP, CTGF, CXCR4, and IL11. Also, cell apoptosis was increased in response to halofuginone. In nude mice inoculated with 1205Lu melanoma cells, a preventive protocol with halofuginone inhibited bone metastasis. The beneficial effects of halofuginone treatment were comparable to those observed with other anti-TGF-β strategies, including systemic administration of SD208, a small molecule inhibitor of TGF-β receptor I kinase, or forced overexpression of Smad7, a negative regulator of TGF-β signaling. Furthermore, mice with established bone metastases treated with halofuginone had significantly less osteolysis than mice receiving placebo assessed by radiographys. Thus, halofuginone is also effective in reducing the progression of melanoma bone metastases. Moreover, halofuginone treatment reduced melanoma metastasis to the brain, showing the potential of this novel treatment against cancer metastasis

    Bidirectional Notch signaling and osteocyte-derived factors in the bone marrow microenvironment promote tumor cell proliferation and bone destruction in multiple myeloma

    Get PDF
    In multiple myeloma, an overabundance of monoclonal plasma cells in the bone marrow induces localized osteolytic lesions that rarely heal due to increased bone resorption and suppressed bone formation. Matrix-embedded osteocytes comprise more than 95% of bone cells and are major regulators of osteoclast and osteoblast activity, but their contribution to multiple myeloma growth and bone disease is unknown. Here, we report that osteocytes in a mouse model of human MM physically interact with multiple myeloma cells in vivo, undergo caspase-3-dependent apoptosis, and express higher RANKL (TNFSF11) and sclerostin levels than osteocytes in control mice. Mechanistic studies revealed that osteocyte apoptosis was initiated by multiple myeloma cell-mediated activation of Notch signaling and was further amplified by multiple myeloma cell-secreted TNF. The induction of apoptosis increased osteocytic Rankl expression, the osteocytic Rankl/Opg (TNFRSF11B) ratio, and the ability of osteocytes to attract osteoclast precursors to induce local bone resorption. Furthermore, osteocytes in contact with multiple myeloma cells expressed high levels of Sost/sclerostin, leading to a reduction in Wnt signaling and subsequent inhibition of osteoblast differentiation. Importantly, direct contact between osteocytes and multiple myeloma cells reciprocally activated Notch signaling and increased Notch receptor expression, particularly Notch3 and 4, stimulating multiple myeloma cell growth. These studies reveal a previously unknown role for bidirectional Notch signaling that enhances MM growth and bone disease, suggesting that targeting osteocyte-multiple myeloma cell interactions through specific Notch receptor blockade may represent a promising treatment strategy in multiple myeloma

    Tumor-expressed adrenomedullin accelerates breast cancer bone metastasis

    Get PDF
    INTRODUCTION: Adrenomedullin (AM) is secreted by breast cancer cells and increased by hypoxia. It is a multifunctional peptide that stimulates angiogenesis and proliferation. The peptide is also a potent paracrine stimulator of osteoblasts and bone formation, suggesting a role in skeletal metastases-a major site of treatment-refractory tumor growth in patients with advanced disease. METHODS: The role of adrenomedullin in bone metastases was tested by stable overexpression in MDA-MB-231 breast cancer cells, which cause osteolytic bone metastases in a standard animal model. Cells with fivefold increased expression of AM were characterized in vitro, inoculated into immunodeficient mice and compared for their ability to form bone metastases versus control subclones. Bone destruction was monitored by X-ray, and tumor burden and osteoclast numbers were determined by quantitative histomorphometry. The effects of AM overexpression on tumor growth and angiogenesis in the mammary fat pad were determined. The effects of AM peptide on osteoclast-like multinucleated cell formation were tested in vitro. A small-molecule AM antagonist was tested for its effects on AM-stimulated ex vivo bone cell cultures and co-cultures with tumor cells, where responses of tumor and bone were distinguished by species-specific real-time PCR. RESULTS: Overexpression of AM mRNA did not alter cell proliferation in vitro, expression of tumor-secreted factors or cell cycle progression. AM-overexpressing cells caused osteolytic bone metastases to develop more rapidly, which was accompanied by decreased survival. In the mammary fat pad, tumors grew more rapidly with unchanged blood vessel formation. Tumor growth in the bone was also more rapid, and osteoclasts were increased. AM peptide potently stimulated bone cultures ex vivo; responses that were blocked by small-molecule adrenomedullin antagonists in the absence of cellular toxicity. Antagonist treatment dramatically suppressed tumor growth in bone and decreased markers of osteoclast activity. CONCLUSIONS: The results identify AM as a target for therapeutic intervention against bone metastases. Adrenomedullin potentiates osteolytic responses in bone to metastatic breast cancer cells. Small-molecule antagonists can effectively block bone-mediated responses to tumor-secreted adrenomedullin, and such agents warrant development for testing in vivo

    Cardiac safety of adjuvant pegylated liposomal doxorubicin with concurrent trastuzumab: a randomized phase II trial

    Get PDF
    Background The cardiac safety of trastuzumab concurrent with pegylated liposomal doxorubicin (PLD) in an adjuvant breast cancer treatment regimen is unknown. Patients and methods Women with resected node-positive or intermediate-risk node-negative HER2 overexpressing breast cancer and baseline left ventricular ejection fraction (LVEF) ≥55% were randomized (1:2) to doxorubicin 60 mg/m2 (A)+cyclophosphamide 600 mg/m2 (C) every 21 days (q21d) for four cycles or PLD 35 mg/m2+C q21d+trastuzumab 2 mg/kg weekly (H) for 12 weeks. Both groups then received paclitaxel (Taxol, T) 80 mg/m2 with H for 12 weeks followed by H to complete 1 year. The primary end point was cardiac event rate or inability to administer 1 year of trastuzumab. Results Of 181 randomized patients, 179 underwent cardiac analysis. The incidence of cardiac toxicity or inability to administer trastuzumab due to cardiotoxicity was 18.6% [n=11; 95% confidence interval (CI) 9.7% to 30.9%] with A+C → T+H and 4.2% (n=5; 95% CI 1.4% to 9.5%) with PLD+C+H → T+H (P=0.0036). All events, except one, were asymptomatic systolic dysfunction or mildly symptomatic heart failure. Mean absolute LVEF reduction at cycle 8 was greater with doxorubicin (5.6% versus 2.1%; P=0.0014). Conclusion PLD+C+H → T+H is feasible and results in lower early cardiotoxicity rates compared with A+C → T+

    Cell adhesion molecule CD166 drives malignant progression and osteolytic disease in multiple myeloma

    Get PDF
    Multiple myeloma (MM) is incurable once osteolytic lesions have seeded at skeletal sites, but factors mediating this deadly pathogenic advance remain poorly understood. Here we report evidence of a major role for the cell adhesion molecule CD166, which we discovered to be highly expressed in MM cell lines and primary bone marrow (BM) cells from patients. CD166+ MM cells homed more efficiently than CD166− cells to the BM of engrafted immunodeficient NSG mice. CD166 silencing in MM cells enabled longer survival, a smaller tumor burden and less osteolytic lesions, as compared to mice bearing control cells. CD166 deficiency in MM cell lines or CD138+ BM cells from MM patients compromised their ability to induce bone resorption in an ex vivo organ culture system. Further, CD166 deficiency in MM cells also reduced formation of osteolytic disease in vivo after intra-tibial engraftment. Mechanistic investigation revealed that CD166 expression in MM cells inhibited osteoblastogenesis of BM-derived osteoblast progenitors by suppressing RUNX2 gene expression. Conversely, CD166 expression in MM cells promoted osteoclastogenesis by activating TRAF6-dependent signaling pathways in osteoclast progenitors. Overall, our results define CD166 as a pivotal director in MM cell homing to the BM and MM progression, rationalizing its further study as a candidate therapeutic target for MM treatment

    Attempts to Image the Early Inflammatory Response during Infection with the Lymphatic Filarial Nematode Brugia pahangi in a Mouse Model

    Get PDF
    Helminth parasites remain a major constraint upon human health and well-being in many parts of the world. Treatment of these infections relies upon a very small number of therapeutics, most of which were originally developed for use in animal health. A lack of high throughput screening systems, together with limitations of available animal models, has restricted the development of novel chemotherapeutics. This is particularly so for filarial nematodes, which are long-lived parasites with a complex cycle of development. In this paper, we describe attempts to visualise the immune response elicited by filarial parasites in infected mice using a non-invasive bioluminescence imaging reagent, luminol, our aim being to determine whether such a model could be developed to discriminate between live and dead worms for in vivo compound screening. We show that while imaging can detect the immune response elicited by early stages of infection with L3, it was unable to detect the presence of adult worms or, indeed, later stages of infection with L3, despite the presence of worms within the lymphatic system of infected animals. In the future, more specific reagents that detect secreted products of adult worms may be required for developing screens based upon live imaging of infected animals

    Efficacy and cost-effectiveness of an outcall program to reduce carer burden and depression among carers of cancer patients (PROTECT) : rationale and design of a randomized controlled trial

    Get PDF
    Published: 6 January 2014BACKGROUND: Carers provide extended and often unrecognized support to people with cancer. The aim of this study is to test the hypothesis that excessive carer burden is modifiable through a telephone outcall intervention that includes supportive care, information and referral to appropriate psycho-social services. Secondary aims include estimation of changes in psychological health and quality of life. The study will determine whether the intervention reduces unmet needs among patient dyads. A formal economic program will also be conducted. METHODS/DESIGN: This study is a single-blind, multi-centre, randomized controlled trial to determine the efficacy and cost-efficacy of a telephone outcall program among carers of newly diagnosed cancer patients. A total of 230 carer/patient dyads will be recruited into the study; following written consent, carers will be randomly allocated to either the outcall intervention program (n = 115) or to a minimal outcall / attention control service (n = 115). Carer assessments will occur at baseline, at one and six months post-intervention. The primary outcome is change in carer burden; the secondary outcomes are change in carer depression, quality of life, health literacy and unmet needs. The trial patients will be assessed at baseline and one month post-intervention to determine depression levels and unmet needs. The economic analysis will include perspectives of both the health care sector and broader society and comprise a cost-consequences analysis where all outcomes will be compared to costs. DISCUSSION: This study will contribute to our understanding on the potential impact of a telephone outcall program on carer burden and provide new evidence on an approach for improving the wellbeing of carers.Patricia M Livingston, Richard H Osborne, Mari Botti, Cathy Mihalopoulos, Sean McGuigan, Leila Heckel, Kate Gunn, Jacquie Chirgwin, David M Ashley and Melinda William

    Pfmrk, a MO15-related protein kinase from Plasmodium falciparum. Gene cloning, sequence, stage-specific expression and chromosome localization.

    Get PDF
    Cyclin-dependent kinases (Cdks) play a central role in the regulation of the eukaryotic cell cycle. A novel gene encoding a Cdk-like protein, Pfmrk, has been isolated from the human malaria parasite Plasmodium falciparum. The gene has no introns and comprises an open reading frame encoding a protein of 324 amino acids with a predicted molecular mass of 38 kDa. Database searches revealed a striking similarity to the Cdk subfamily with the highest similarity to human MO15 (Cdk7). The overall sequence of Pfmrk shares 62% similarity and 46% identity with human MO15, in comparison to the 49-58% similarity and 34-43% identity with other human Cdks. Pfmrk contains two unique inserts: one consisting of 5 amino acids just before the cyclin-binding motif and the other composed of 13 amino acids within the T-loop equivalent region. Southern blots of genomic DNA digests and chromosomal separations showed that Pfmrk is a single-copy gene conserved between several parasite strains and is located on chromosome 10. A 2500-nucleotide transcript of this gene is expressed predominantly in the sexual blood stages (gametocytes), suggesting that Pfmrk may be involved in sexual stage development
    corecore