109 research outputs found
Transplantation tolerance: lessons from experimental rodent models
Immunological tolerance or functional unresponsiveness to a transplant is arguably the only approach that is likely to provide long-term graft survival without the problems associated with life-long global immunosuppression. Over the past 50 years, rodent models have become an invaluable tool for elucidating the mechanisms of tolerance to alloantigens. Importantly, rodent models can be adapted to ensure that they reflect more accurately the immune status of human transplant recipients. More recently, the development of genetically modified mice has enabled specific insights into the cellular and molecular mechanisms that play a key role in both the induction and maintenance of tolerance to be obtained and more complex questions to be addressed. This review highlights strategies designed to induce alloantigen specific immunological unresponsiveness leading to transplantation tolerance that have been developed through the use of experimental models
Metals impact into the Paranaguá Estuarine Complex (Brazil) during the exceptional flood of 2011
Abstract Particulate and dissolved metal concentrations were determined after the largest flood in the last 30 years on the east-west axis of the Paranaguá Estuarine Complex (PEC) and compared to the those of the dry period at two stations. Results confirmed that the flood greatly affected riverine outflows and the behavior of metals in the PEC. In particular, a sharp decrease in salinity was followed by extremely high SPM concentrations leading to a decrease in DO concentrations at both stations. For the dissolved phase, ANOSIM analysis showed a significant dissimilarity at each station between the sampled periods, whereas for the particulate phase this dissimilarity was found only for the samplings taken at the Antonina Station. KD values suggested dissolved Cu behavior was related to the presence of organic complexes and dissolved Mn had sediment resuspension of redox sediments and or/pore water injection as sources. Metal concentrations were lower than in polluted estuaries, though high enrichment factors found after the flood pointed to the influence of anthropogenic sources. In conclusion, the flood's influence was more evident at the Antonina Station, due to its location in the upper estuary, whereas in Paranaguá a high SPM content with low metal concentration was found, following the common pattern generally found in other marine systems subject to heavy rainfall events
Adiabatic compression testing - part II: background and approach to estimating severity of test methodology
Adiabatic compression testing of components in gaseous oxygen is a test method that is utilized worldwide and is commonly required to qualify a component for ignition tolerance under its intended service. This testing is required by many industry standards organizations and government agencies; however, a thorough evaluation of the test parameters and test system influences on the thermal energy produced during the test has not yet been performed. This paper presents a background for adiabatic compression testing and discusses an approach to estimating potential differences in the thermal profiles produced by different test laboratories. A “Thermal Profile Test Fixture” (TPTF) is described that is capable of measuring and characterizing the thermal energy for a typical pressure shock by any test system. The test systems at Wendell Hull & Associates, Inc. (WHA) in the USA and at the BAM Federal Institute for Materials Research and Testing in Germany are compared in this manner and some of the data obtained is presented. The paper also introduces a new way of comparing the test method to idealized processes to perform system-by-system comparisons. Thus, the paper introduces an “Idealized Severity Index” (ISI) of the thermal energy to characterize a rapid pressure surge. From the TPTF data a “Test Severity Index” (TSI) can also be calculated so that the thermal energies developed by different test systems can be compared to each other and to the ISI for the equivalent isentropic process. Finally, a “Service Severity Index” (SSI) is introduced to characterizing the thermal energy of actual service conditions. This paper is the second in a series of publications planned on the subject of adiabatic compression testing
Origin and Accumulation of Trace Elements in Sediments of the Northwestern Mediterranean Margin
Continental margins receive natural and anthropogenic trace elements (TEs) from direct atmospheric deposition of aerosols onto the sea surface and from advection of riverine suspended particles and/or resuspended sediments from the continental shelf/slope. When the margin is incised by submarine canyons, as for example in the Northwestern Mediterranean Sea, most of these particles are preferentially transferred via these topographic features towards their final repositories in the abyssal plain. The Gulf of Lions (GoL) shelf receives the largest particulate riverine input to the Western Mediterranean, with its associated chemical contaminants originating from the industrialized and urbanized Rhone Valley. Sediments samples (grabs, cores and moored traps) collected in the Cap de Creus (CdC) Canyon and its adjacent areas at the Southwestern exit of the GoL were analyzed to explore the origin, dispersion, transfer and accumulation of a suite of TEs (Ag, Cd, Co, Cr, Cu, Ni, Pb, Zn and V) from the GoL shelf to the adjacent continental rise. Distributions of Cu, Cr, Ni, Pb, Zn and V in the surface sediments of the shelf confirm their terrigenous origin in association with clay minerals, whereas Ag and Cd are more associated with organic matter (OM). All these TEs are anthropogenically enriched in the Rhone prodelta sediments. Anthropogenic influence remains clearly discernible in the GoL shelf surface sediments for Ag, Pb and Zn. Hydrodynamical resuspension and sorting of shelf sediments occur at the head of the CdC Canyon during dense shelf-water cascading events. During these events, the material collected in moored sediment traps contains a higher coarse carbonate fraction slightly impoverished in TEs compared to the clays of the nepheloid layer and the organically-rich particles deposited before and at the end of the cascading period. Upper and middle canyon sediments are characterized by high sedimentation rates (~ 0.2 cm yr− 1) of fine clay material. Conversely, sediments from the lower continental slope and rise exhibit low sedimentation rates (~ 0.06 cm yr− 1) and receive carbonaceous planktonic detritus from the water column. At the lower continental slope, coarse material includes foraminifers and pteropods, whereas at the continental rise finer planktonic-derived material is more abundant. Both in the CdC Canyon and in its adjacent lower continental slope/rise sediments, Co, Cu, Cr, Ni and V are associated with clay, whereas Ag, Cu and Pb are preferentially associated with OM. Cadmium, Cr, and Zn are also associated with OM in canyon sediments. Carbonaceous plankton appears to be especially efficient for scavenging Ag, whereas, Cr, V, Zn and Pb are diluted by biogenic carbonates. An authigenic Mn fraction is enriched with Co and Ni. Lead and Zn concentration levels and vertical profile patterns, along with Pb stable isotopic ratios, indicate that significant parts of Pb and Zn are of anthropogenic origin. A sediment chronology based on 210Pb dating reveals that Pb anthropization, mainly from gasoline additives, culminated between 1960 and 1980, being the current concentrations > 40% lower than 30 years ago. A similar distribution is observed for Zn, which originates mainly from combustion processes; but the reduction of Zn contamination amounts to only 20% during the same period. The largest anthropogenic Pb accumulation occurs in the middle part of CdC Canyon, with an inventory of 200 μg cm− 2. At the most distal part of the continental rise anthropogenic Pb accumulation within the first ~ 10 cm below the surface sediment is estimated around 10 μg cm− 2, which is similar to the direct atmospheric deposition estimate
- …