416 research outputs found

    On adaptive wavelet estimation of a class of weighted densities

    Full text link
    We investigate the estimation of a weighted density taking the form g=w(F)fg=w(F)f, where ff denotes an unknown density, FF the associated distribution function and ww is a known (non-negative) weight. Such a class encompasses many examples, including those arising in order statistics or when gg is related to the maximum or the minimum of NN (random or fixed) independent and identically distributed (\iid) random variables. We here construct a new adaptive non-parametric estimator for gg based on a plug-in approach and the wavelets methodology. For a wide class of models, we prove that it attains fast rates of convergence under the Lp\mathbb{L}_p risk with p1p\ge 1 (not only for p=2p = 2 corresponding to the mean integrated squared error) over Besov balls. The theoretical findings are illustrated through several simulations

    A silicate disk in the heart of the Ant

    Full text link
    We aim at getting high spatial resolution information on the dusty core of bipolar planetary nebulae to directly constrain the shaping process. Methods: We present observations of the dusty core of the extreme bipolar planetary nebula Menzel 3 (Mz 3, Hen 2-154, the Ant) taken with the mid-infrared interferometer MIDI/VLTI and the adaptive optics NACO/VLT. The core of Mz 3 is clearly resolved with MIDI in the interferometric mode, whereas it is unresolved from the Ks to the N bands with single dish 8.2 m observations on a scale ranging from 60 to 250 mas. A striking dependence of the dust core size with the PA angle of the baselines is observed, that is highly suggestive of an edge-on disk whose major axis is perpendicular to the axis of the bipolar lobes. The MIDI spectrum and the visibilities of Mz 3 exhibit a clear signature of amorphous silicate, in contrast to the signatures of crystalline silicates detected in binary post-AGB systems, suggesting that the disk might be relatively young. We used radiative-transfer Monte Carlo simulations of a passive disk to constrain its geometrical and physical parameters. Its inclination (74 degrees ±\pm 3 degrees) and position angle (5 degrees ±\pm 5 degrees) are in accordance with the values derived from the study of the lobes. The inner radius is 9±\pm 1 AU and the disk is relatively flat. The dust mass stored in the disk, estimated as 1 x 10-5Msun, represents only a small fraction of the dust mass found in the lobes and might be a kind of relic of an essentially polar ejection process

    A close look into the carbon disk at the core of the planetary nebula CPD-568032

    Get PDF
    We present high spatial resolution observations of the dusty core of the Planetary Nebula with Wolf-Rayet central star CPD-568032. These observations were taken with the mid-infrared interferometer VLTI/MIDI in imaging mode providing a typical 300 mas resolution and in interferometric mode using UT2-UT3 47m baseline providing a typical spatial resolution of 20 mas. The visible HST images exhibit a complex multilobal geometry dominated by faint lobes. The farthest structures are located at 7" from the star. The mid-IR environment of CPD-568032 is dominated by a compact source, barely resolved by a single UT telescope in a 8.7 micron filter. The infrared core is almost fully resolved with the three 40-45m projected baselines ranging from -5 to 51 degree but smooth oscillating fringes at low level have been detected in spectrally dispersed visibilities. This clear signal is interpreted in terms of a ring structure which would define the bright inner rim of the equatorial disk. Geometric models allowed us to derive the main geometrical parameters of the disk. For instance, a reasonably good fit is reached with an achromatic and elliptical truncated Gaussian with a radius of 97+/-11 AU, an inclination of 28+/-7 degree and a PA for the major axis at 345+/-7 degree. Furthermore, we performed some radiative transfer modeling aimed at further constraining the geometry and mass content of the disk, by taking into account the MIDI dispersed visibilities, spectra, and the large aperture SED of the source. These models show that the disk is mostly optically thin in the N band and highly flared.Comment: Paper accepted in A&

    The RCB star V854 Cen is surrounded by a hot dusty shell

    Get PDF
    Aims : The hydrogen-deficient supergiants known as R Coronae Borealis (RCB) stars might be the result of a double-degenerate merger of two white dwarfs (WDs), or a final helium shell flash in a planetary nebula central star. In this context, any information on the geometry of their circumstellar environment and, in particular, the potential detection of elongated structures, is of great importance. Methods : We obtained near-IR observations of V854 Cen with the AMBER recombiner located at the Very Large Telescope Interferometer (VLTI) array with the compact array (B\leq35m) in 2013 and the long array (B\leq140m) in 2014. At each time, V854 Cen was at maximum light. The HH- and KK-band continua were investigated by means of spectrally dependant geometric models. These data were supplemented with mid-IR VISIR/VLT images. Results : A dusty slightly elongated over density is discovered both in the HH- and KK-band images. With the compact array, the central star is unresolved (Θ2.5\Theta\leq2.5\,mas), but a flattened dusty environment of 8×118 \times 11 mas is discovered whose flux increases from about \sim20% in the HH band to reach about \sim50% at 2.3\micron, which indicates hot (T\sim1500\,K) dust in the close vicinity of the star. The major axis is oriented at a position angle (P.A.) of 126±\pm29deg\deg. Adding the long-array configuration dataset provides tighter constraints on the star diameter (Θ1.0\Theta\leq1.0 mas), a slight increase of the overdensity to 12×1512 \times 15 mas and a consistent P.A. of 133±\pm49deg\deg. The closure phases, sensitive to asymmetries, are null and compatible with a centro-symmetric, unperturbed environment excluding point sources at the level of 3% of the total flux in 2013 and 2014. The VISIR images exhibit a flattened aspect ratio at the 15-20% level at larger distances (\sim1\arcsec) with a position angle of 92±\pm19deg\deg, marginally consistent with the interferometric observations. Conclusions : This is the first time that a moderately elongated structure has been observed around an RCB star. These observations confirm the numerous suggestions for a bipolar structure proposed for this star in the literature, which were mainly based on polarimetric and spectroscopic observations.Comment: Accepted by A\&A, new version after language editing, Astronomy and Astrophysics (2014

    Nonparametric estimation in a regression model with additive and multiplicative noise

    Get PDF
    In this paper, we consider an unknown functional estimation problem in a general nonparametric regression model with the characteristic of having both multiplicative and additive noise. We propose two wavelet estimators, which, to our knowledge, are new in this general context. We prove that they achieve fast convergence rates under the mean integrated square error over Besov spaces. The rates obtained have the particularity of being established under weak conditions on the model. A numerical study in a context comparable to stochastic frontier estimation (with the difference that the boundary is not necessarily a production function) supports the theory

    Fundamental parameters of 16 late-type stars derived from their angular diameter measured with VLTI/AMBER

    Full text link
    Thanks to their large angular dimension and brightness, red giants and supergiants are privileged targets for optical long-baseline interferometers. Sixteen red giants and supergiants have been observed with the VLTI/AMBER facility over a two-years period, at medium spectral resolution (R=1500) in the K band. The limb-darkened angular diameters are derived from fits of stellar atmospheric models on the visibility and the triple product data. The angular diameters do not show any significant temporal variation, except for one target: TX Psc, which shows a variation of 4% using visibility data. For the eight targets previously measured by Long-Baseline Interferometry (LBI) in the same spectral range, the difference between our diameters and the literature values is less than 5%, except for TX Psc, which shows a difference of 11%. For the 8 other targets, the present angular diameters are the first measured from LBI. Angular diameters are then used to determine several fundamental stellar parameters, and to locate these targets in the Hertzsprung-Russell Diagram (HRD). Except for the enigmatic Tc-poor low-mass carbon star W Ori, the location of Tc-rich stars in the HRD matches remarkably well the thermally-pulsating AGB, as it is predicted by the stellar-evolution models. For pulsating stars with periods available, we compute the pulsation constant and locate the stars along the various sequences in the Period -- Luminosity diagram. We confirm the increase in mass along the pulsation sequences, as predicted by the theory, except for W Ori which, despite being less massive, appears to have a longer period than T Cet along the first-overtone sequence.Comment: 15 pages, 9 figures, 6 table

    Mid-infrared interferometry of massive young stellar objects. I. VLTI and Subaru observations of the enigmatic object M8E-IR

    Get PDF
    [abridged] Our knowledge of the inner structure of embedded massive young stellar objects is still quite limited. We attempt here to overcome the spatial resolution limitations of conventional thermal infrared imaging. We employed mid-infrared interferometry using the MIDI instrument on the ESO/VLTI facility to investigate M8E-IR, a well-known massive young stellar object suspected of containing a circumstellar disk. Spectrally dispersed visibilities in the 8-13 micron range were obtained at seven interferometric baselines. We resolve the mid-infrared emission of M8E-IR and find typical sizes of the emission regions of the order of 30 milli-arcseconds (~45 AU). Radiative transfer simulations have been performed to interpret the data. The fitting of the spectral energy distribution, in combination with the measured visibilities, does not provide evidence for an extended circumstellar disk with sizes > 100 AU but requires the presence of an extended envelope. The data are not able to constrain the presence of a small-scale disk in addition to an envelope. In either case, the interferometry measurements indicate the existence of a strongly bloated, relatively cool central object, possibly tracing the recent accretion history of M8E-IR. In addition, we present 24.5 micron images that clearly distinguish between M8E-IR and the neighbouring ultracompact HII region and which show the cometary-shaped infrared morphology of the latter source. Our results show that IR interferometry, combined with radiative transfer modelling, can be a viable tool to reveal crucial structure information on embedded massive young stellar objects and to resolve ambiguities arising from fitting the SED.Comment: 7 pages, 5 figures, accepted for publication in A&A, new version after language editing, one important reference added, conclusions unchange

    V838 Monocerotis: the central star and its environment a decade after outburst

    Get PDF
    Aims. V838 Monocerotis erupted in 2002, brightened in a series of outbursts, and eventually developed a spectacular light echo. A very red star emerged a few months after the outburst. The whole event has been interpreted as the result of a merger. Methods. We obtained near-IR and mid-IR interferometric observations of V838 Mon with the AMBER and MIDI recombiners located at the Very Large Telescope Interferometer (VLTI) array. The MIDI two-beam observations were obtained with the 8m Unit Telescopes between October 2011 and February 2012. The AMBER three-beam observations were obtained with the compact array (B\leqm) in April 2013 and the long array (B\leq140m) in May 2014, using the 1.8m Auxiliary Telescopes. Results. A significant new result is the detection of a compact structure around V838 Mon, as seen from MIDI data. The extension of the structure increases from a FWHM of 25 mas at 8 {\mu}m to 70 mas at 13 {\mu}m. At the adopted distance of D = 6.1 ±\pm 0.6 kpc, the dust is distributed from about 150 to 400 AU around V838 Mon. The MIDI visibilities reveal a flattened structure whose aspect ratio increases with wavelength. The major axis is roughly oriented around a position angle of -10 degrees, which aligns with previous polarimetric studies reported in the literature. This flattening can be interpreted as a relic of the 2002 eruption or by the influence of the currently embedded B3V companion. The AMBER data provide a new diameter for the pseudo-photosphere, which shows that its diameter has decreased by about 40% in 10yrs, reaching a radius R_* = 750 ±\pm 200 R_{\odot} (3.5 ±\pm 1.0 AU). Conclusions. After the 2002 eruption, interpreted as the merging of two stars, it seems that the resulting source is relaxing to a normal state. The nearby environment exhibits an equatorial over-density of dust up to several hundreds of AU.Comment: Astronomy and Astrophysics (2014) Will be set by the publishe
    corecore