264 research outputs found
Spitzer Space Telescope Observations of the Magnetic Cataclysmic Variable AE Aqr
The magnetic cataclysmic variable AE Aquarii hosts a rapidly rotating white
dwarf which is thought to expel most of the material streaming onto it.
Observations of AE Aqr have been obtained in the wavelength range of 5 - 70
microns with the IRS, IRAC, and MIPS instruments on board the Spitzer Space
Telescope. The spectral energy distribution reveals a significant excess above
the K4V spectrum of the donor star with the flux increasing with wavelength
above 12.5 microns. Superposed on the energy distribution are several hydrogen
emission lines, identified as Pf alpha and Hu alpha, beta, gamma. The infrared
spectrum above 12.5 microns can be interpreted as synchrotron emission from
electrons accelerated to a power-law distribution dN=E^{-2.4}dE in expanding
clouds with an initial evolution timescale in seconds. However, too many
components must then be superposed to explain satisfactorily both the
mid-infrared continuum and the observed radio variability. Thermal emission
from cold circumbinary material can contribute, but it requires a disk
temperature profile intermediate between that produced by local viscous
dissipation in the disk and that characteristic of a passively irradiated disk.
Future high-time resolution observations spanning the optical to radio regime
could shed light on the acceleration process and the subsequent particle
evolution.Comment: 15 pages, 3 figures, accepted for publication in Ap
Nanodust detection near 1 AU from spectral analysis of Cassini/RPWS radio data
Nanodust grains of a few nanometer in size are produced near the Sun by
collisional break-up of larger grains and picked-up by the magnetized solar
wind. They have so far been detected at 1 AU by only the two STEREO spacecraft.
Here we analyze the spectra measured by the radio and plasma wave instrument
onboard Cassini during the cruise phase close to Earth orbit; they exhibit
bursty signatures similar to those observed by the same instrument in
association to nanodust stream impacts on Cassini near Jupiter. The observed
wave level and spectral shape reveal impacts of nanoparticles at about 300
km/s, with an average flux compatible with that observed by the radio and
plasma wave instrument onboard STEREO and with the interplanetary flux models
Graphical sequences of some family of induced subgraphs
The subdivision graph of a graph is the graph obtained by inserting a new vertex into every edge of . The or join of the graph with the graph , denoted by , is obtained from and by joining all vertices of with all vertices of . The or join of and , denoted by , is obtained from and by joining all vertices of corresponding to the edges of with all vertices of . In this paper, we obtain graphical sequences of the family of induced subgraphs of , and . Also we prove that the graphic sequence of is potentially -graphical
POTENTIALLY GRAPHIC SEQUENCES OF SPLIT GRAPHS
Abstract. A sequence π = (d 1 , d 2 , . . . , d n ) of non-negative integers is said to be graphic if it is the degree sequence of a simple G on n vertices, and such a graph G is referred to as a realization of π. The set of all non-increasing non-negative integer sequences π = (d 1 , d 2 , . . . , d n ) is denoted by N S n . A sequence π ∈ N S n is said to be graphic if it is the degree sequence of a graph G on n vertices, and such a graph G is called a realization of π. The set of all graphic sequences in N S n is denoted by GS n . A split graph K r + K s on r + s vertices is denoted by S r,s . A graphic sequence π is potentially H-graphic if there is a realizaton of π containing H as a subgraph. In this paper, we determine the graphic sequences of subgraphs H, where H is S r1,s1 + S r2,s2 + S r3,s3 + . . . + S rm,sm , S r1,s1 ∨ S r2,s2 ∨ . . . ∨ S rm,sm and S r1,s1 × S r2,s2 × . . . × S rm,sm and +, V and × denotes the standard join operation, the normal join operation and the cartesian product in these graphs respectively
Association between reward-related functional connectivity and tri-level mood and anxiety symptoms
Depression and anxiety are associated with abnormalities in brain regions that process rewards including the medial orbitofrontal cortex (mOFC), the ventral striatum (VS), and the amygdala. However, there are inconsistencies in these findings. This may be due to past reliance on categorical diagnoses that, while valuable, provide less precision than may be required to understand subtle neural changes associated with symptoms of depression and anxiety. In contrast, the tri-level model defines symptom dimensions that are common (General Distress) or relatively specific (Anhedonia-Apprehension, Fears) to depression and anxiety related disorders, which provide increased precision. In the current study, eligibility was assessed by quasi-orthogonal screening questionnaires measuring reward and threat sensitivity (Behavioral Activation Scale; Eysenck Personality Questionnaire-Neuroticism). These participants were assessed on tri-level symptom severity and completed the Monetary Incentive Delay task during fMRI scanning. VS-mOFC and VS-amygdala connectivity were estimated during reward anticipation and reward outcome. Heightened General Distress was associated with lower VS-mOFC connectivity during reward anticipation (b = -0.064, p = 0.021) and reward outcome (b = -0.102, p = 0.014). Heightened Anhedonia-Apprehension was associated with greater VS-amygdala connectivity during reward anticipation (b = 0.065, p = 0.004). The present work has important implications for understanding the coupling between the mOFC and vS and the amygdala and the vS during reward processing in the pathophysiology of mood and anxiety symptoms and for developing targeted behavioral, pharmacological, and neuromodulatory interventions to help manage these symptoms.Temple University. College of Liberal ArtsPsychology and Neuroscienc
Origins of the Ambient Solar Wind: Implications for Space Weather
The Sun's outer atmosphere is heated to temperatures of millions of degrees,
and solar plasma flows out into interplanetary space at supersonic speeds. This
paper reviews our current understanding of these interrelated problems: coronal
heating and the acceleration of the ambient solar wind. We also discuss where
the community stands in its ability to forecast how variations in the solar
wind (i.e., fast and slow wind streams) impact the Earth. Although the last few
decades have seen significant progress in observations and modeling, we still
do not have a complete understanding of the relevant physical processes, nor do
we have a quantitatively precise census of which coronal structures contribute
to specific types of solar wind. Fast streams are known to be connected to the
central regions of large coronal holes. Slow streams, however, appear to come
from a wide range of sources, including streamers, pseudostreamers, coronal
loops, active regions, and coronal hole boundaries. Complicating our
understanding even more is the fact that processes such as turbulence,
stream-stream interactions, and Coulomb collisions can make it difficult to
unambiguously map a parcel measured at 1 AU back down to its coronal source. We
also review recent progress -- in theoretical modeling, observational data
analysis, and forecasting techniques that sit at the interface between data and
theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue
connected with a 2016 ISSI workshop on "The Scientific Foundations of Space
Weather." 44 pages, 9 figure
Plasmodium falciparum metacaspase PfMCA-1 triggers a z-VAD-fmk inhibitable protease to promote cell death.
Activation of proteolytic cell death pathways may circumvent drug resistance in deadly protozoan parasites such as Plasmodium falciparum and Leishmania. To this end, it is important to define the cell death pathway(s) in parasites and thus characterize proteases such as metacaspases (MCA), which have been reported to induce cell death in plants and Leishmania parasites. We, therefore, investigated whether the cell death function of MCA is conserved in different protozoan parasite species such as Plasmodium falciparum and Leishmania major, focusing on the substrate specificity and functional role in cell survival as compared to Saccharomyces cerevisae. Our results show that, similarly to Leishmania, Plasmodium MCA exhibits a calcium-dependent, arginine-specific protease activity and its expression in yeast induced growth inhibition as well as an 82% increase in cell death under oxidative stress, a situation encountered by parasites during the host or when exposed to drugs such as artemisins. Furthermore, we show that MCA cell death pathways in both Plasmodium and Leishmania, involve a z-VAD-fmk inhibitable protease. Our data provide evidence that MCA from both Leishmania and Plasmodium falciparum is able to induce cell death in stress conditions, where it specifically activates a downstream enzyme as part of a cell death pathway. This enzymatic activity is also induced by the antimalarial drug chloroquine in erythrocytic stages of Plasmodium falciparum. Interestingly, we found that blocking parasite cell death influences their drug sensitivity, a result which could be used to create therapeutic strategies that by-pass drug resistance mechanisms by acting directly on the innate pathways of protozoan cell death
Nearwork-induced transient myopia in preadolescent Hong Kong Chinese
PURPOSE. To compare the magnitude and time course of nearwork-induced transient myopia (NITM) in preadolescent Hong Kong Chinese myopes and emmetropes. METHOD. Forty-five Hong Kong Chinese children, 35 myopes and 10 emmetropes aged 6 to 12 years (median, 7.5), monocularly viewed a letter target through a Badal lens for 5 minutes at either 5.00- or 2.50-D accommodative demand, followed by 3 minutes of viewing the equivalent target at optical infinity. Accommodative responses were measured continuously with a modified, infrared, objective open-field autorefractor. Accommodative responses were also measured for a countercondition: viewing of a letter target for 5 minutes at optical infinity, followed by 3 minutes of viewing the target at a 5.00-D accommodative demand. The results were compared with tonic accommodation and both subject and family history of refractive error. RESULTS. Retinal-blur-driven NITM was significantly greater in Hong Kong Chinese children with myopic vision than in the emmetropes after both near tasks, but showed no significant dose effect. The NITM was still evident 3 minutes after viewing the 5.00-D near task for 5 minutes. The magnitude of NITM correlated with the accommodative drift after viewing a distant target for more than 4 minutes, but was unrelated to the subjects' or family history of refractive error. CONCLUSIONS. In a preadolescent ethnic population with known predisposition to myopia, there is a significant posttask blur-driven accommodative NITM, which is sustained for longer than has previously been found in white adults
The impact of the molecular weight on the nonequilibrium glass transition dynamics of poly(phenylmethyl siloxane) in cylindrical nanopores
Changes in the glass transition dynamics caused by nanoconfinement reveal pronounced out-of-equilibrium features. Therefore, the confinement effects weaken with time. Using dielectric spectroscopy, we have investigated the impact of molecular weight on the equilibration kinetics of the studied polymer embedded within anodic aluminum oxide nanoporous templates. For our research, we have used poly(phenylmethyl siloxane) (PMPS) with low (Mw = 2530 g/mol) and high (Mw = 27,800 g/mol) molecular weight. We have found that the observed faster dynamics of the nanopore-confined systems weakens with time, and ultimately it is possible to regain the bulk-like mobility. The equilibration time increases by reducing the pore size and lowering the annealing temperature much below the glass transition temperature of the interfacial layer, Tg_interface. The experimental data analysis has also revealed that the molecular weight of the nanopore-confined polymer influences the recovery of the bulk segmental relaxation time, τα. Low-molecular-weight PMPS rearrange and reach denser packing of the polymer chains with greater ease than the high-molecular-weight one. Finally, we have also demonstrated that the molecular weight affects the relationship between the time constant characterizing the equilibration kinetics and the characteristic time of viscous flow in cylindrical channels of nanometer size
Evidence for a general factor of behavioral activation system sensitivity
Individual differences in one's propensity to engage the behavioral activation system (BAS) and behavioral inhibition system (BIS) have primarily been studied with Caver and White's (1994) BIS/BAS scale. Whereas, Carver and White identified the BIS as a unidimensional scale, they identified three separable BAS group factors - drive, fun seeking, and reward responsiveness -which Carver urged against combining into a BAS total score. Despite this, a BAS total score has been used extensively although researchers have yet to test whether a BAS general factor exists and, if so, whether a BAS total score can be interpreted as primarily being a measure of the general factor. The current study observed that the best fitting BAS factor model of those we tested was a hierarchical model with three group facets and a general factor. This model was largely invariant across both sex and race/ethnicity. We show, for the first time, that a general factor accounts for the majority of the variance in BAS total scores. Due to the superior fit of the hierarchical model and variance accounted for by the general factor, we conclude that researchers are psychometrically justified in using a BAS total score
- …
