327 research outputs found
A method for concentrating lipid peptide DNA and siRNA nanocomplexes that retains their structure and transfection efficiency
Nonviral gene and small interfering RNA (siRNA) delivery formulations are extensively used for biological and therapeutic research in cell culture experiments, but less so in in vivo and clinical research. Difficulties with formulating the nanoparticles for uniformity and stability at concentrations required for in vivo and clinical use are limiting their progression in these areas. Here, we report a simple but effective method of formulating monodisperse nanocomplexes from a ternary formulation of lipids, targeting peptides, and nucleic acids at a low starting concentration of 0.2 mg/mL of DNA, and we then increase their concentration up to 4.5 mg/mL by reverse dialysis against a concentrated polymer solution at room temperature. The nanocomplexes did not aggregate and they had maintained their biophysical properties, but, importantly, they also mediated DNA transfection and siRNA silencing in cultured cells. Moreover, concentrated anionic nanocomplexes administered by convection-enhanced delivery in the striatum showed efficient silencing of the β-secretase gene BACE1. This method of preparing nanocomplexes could probably be used to concentrate other nonviral formulations and may enable more widespread use of nanoparticles in vivo
An experimental approach to unravel 2D ground resonances: application to an alluvial-sedimentary basin
The study of ground resonances is important to assess seismic site amplification and to infer information on the geometrical and mechanical properties of the resonating structures. 1D- and 2D-type resonances imply different dynamic behavior that can be distinguished by inspecting the individual spectral components of single-station microtremor measurements. Typically, 2D resonance modes develop along cross-sections of deep sediment-filled valleys and consist of longitudinal, transverse and vertical modes that can be identified as spectral peaks when ground motion is recorded parallel to the axes of the valley. In the case of more complex geometries, such as sedimentary basins, resonance modes are more difficult to predict and depend on the unknown complexity of the buried bedrock geometry. We show how a simple signal rotation procedure applied to single-station microtremor recordings reveals the underlying 2D resonance pattern. The method allows assessing the axes of motion of buried geological structures and identifying 2D resonance modes along these axes. Their directionality, frequency and amplitude features are then analyzed to extract information on the bedrock geometry. We test our method in the Bolzano alluvial-sedimentary basin and we observe that apparently complicated resonance patterns may be simplified by locally referring to the simplest description of the phenomenon as 2D resonance of a valley slice. The bedrock morphology can be decomposed into 2D-like geometries, i.e., excavated channels, and the observed resonances develop within cross-sections of these channels
Seismic Station Installations and Their Impact on the Recorded Signals and Derived Quantities
The role of local geology in controlling ground motion has long been acknowledged.
Consequently, increasing attention is paid to the assessment of the geophysical properties
of the soils at the seismic stations, which impact the station recordings and a series
of related quantities, particularly those referring to seismic hazard estimates. Not the
same level of attention is commonly dedicated to the seismic station installation, to the
point that it is generally believed that housings and shelters containing seismic instruments
are of no interest, because they can only affect frequencies well above the engineering
range of interest. Using examples from seismometric and accelerometric
stations, we describe the (1) housing, (2) foundation, and (3) pillar effects on the seismic
records. We propose a simple working scheme to identify the existence of potential
installation-related issues and to assess the frequency fidelity range of response of
a seismic station to ground motion. Our scheme is developed mostly on ambient noise
recordings and, thus, surface waves. The hope is that, besides the parameters that start
to be routinely introduced in the seismic archives (VS30, soil classes, etc.), the assessment
of the maximum reliable frequency, under which no soil–structure interaction is
expected, also becomes a mandatory information. In our experience, for some installation
sites, the maximum reliable frequency can even be less than a very few hert
Statistical modeling of ground motion relations for seismic hazard analysis
We introduce a new approach for ground motion relations (GMR) in the
probabilistic seismic hazard analysis (PSHA), being influenced by the extreme
value theory of mathematical statistics. Therein, we understand a GMR as a
random function. We derive mathematically the principle of area-equivalence;
wherein two alternative GMRs have an equivalent influence on the hazard if
these GMRs have equivalent area functions. This includes local biases. An
interpretation of the difference between these GMRs (an actual and a modeled
one) as a random component leads to a general overestimation of residual
variance and hazard. Beside this, we discuss important aspects of classical
approaches and discover discrepancies with the state of the art of stochastics
and statistics (model selection and significance, test of distribution
assumptions, extreme value statistics). We criticize especially the assumption
of logarithmic normally distributed residuals of maxima like the peak ground
acceleration (PGA). The natural distribution of its individual random component
(equivalent to exp(epsilon_0) of Joyner and Boore 1993) is the generalized
extreme value. We show by numerical researches that the actual distribution can
be hidden and a wrong distribution assumption can influence the PSHA negatively
as the negligence of area equivalence does. Finally, we suggest an estimation
concept for GMRs of PSHA with a regression-free variance estimation of the
individual random component. We demonstrate the advantages of event-specific
GMRs by analyzing data sets from the PEER strong motion database and estimate
event-specific GMRs. Therein, the majority of the best models base on an
anisotropic point source approach. The residual variance of logarithmized PGA
is significantly smaller than in previous models. We validate the estimations
for the event with the largest sample by empirical area functions. etc
An FDD-based modal parameter-less proportional flexibility-resembling matrix for response-only damage detection
Modal flexibility-based methods are effective tools for vibration-based structural damage detection, including in the output-only case. These methods are typically characterized by two stages: first, the modal parameters are identified, thus obtaining a certain number of modes; second, these modal parameters are used to assemble the modal flexibility matrix. This paper proposes a method for estimating a matrix that approximates a proportional flexibility matrix, termed proportional flexibility-resembling (PFR) matrix, and shows that this matrix can be used for damage detection and localization purposes. This matrix is obtained through signal processing operations to be executed after applying the first steps of the frequency-domain decomposition (FDD) technique-i.e., after the singular value decomposition of the spectral density matrix. The defining aspect of the PFR matrix is that, differently from the traditional formulation of modal flexibility and proportional flexibility matrices, it can be assembled without the need of an explicit identification of the modal parameters. In fact, the matrix is estimated by processing all first singular vectors and also all first singular values in a selected frequency range. In the proposed method, the typical two stage approach of traditional modal flexibility methods is avoided, and the intervention of an operator is limited to setting the values of a few parameters in the initial phase of the process. Numerical simulations and experimental data from a testbed structure were used to show the effectiveness of the proposed approach, and the analyses were performed by considering structures with different damage scenarios and damping properties
An FDD-based modal parameter-less proportional flexibility-resembling matrix for response-only damage detection
Modal flexibility-based methods are effective tools for vibration-based structural damage detection, including in the output-only case. These methods are typically characterized by two stages: first, the modal parameters are identified, thus obtaining a certain number of modes; second, these modal parameters are used to assemble the modal flexibility matrix. This paper proposes a method for estimating a matrix that approximates a proportional flexibility matrix, termed proportional flexibility-resembling (PFR) matrix, and shows that this matrix can be used for damage detection and localization purposes. This matrix is obtained through signal processing operations to be executed after applying the first steps of the frequency-domain decomposition (FDD) technique—i.e., after the singular value decomposition of the spectral density matrix. The defining aspect of the PFR matrix is that, differently from the traditional formulation of modal flexibility and proportional flexibility matrices, it can be assembled without the need of an explicit identification of the modal parameters. In fact, the matrix is estimated by processing all first singular vectors and also all first singular values in a selected frequency range. In the proposed method, the typical two stage approach of traditional modal flexibility methods is avoided, and the intervention of an operator is limited to setting the values of a few parameters in the initial phase of the process. Numerical simulations and experimental data from a testbed structure were used to show the effectiveness of the proposed approach, and the analyses were performed by considering structures with different damage scenarios and damping properties
Potential instability of gas hydrates along the chilean margin due to ocean warming
In the last few years, interest in the offshore Chilean margin has increased rapidly due to the presence of gas hydrates. We have modelled the gas hydrate stability zone off Chilean shores (from 33\ub0 S to 46\ub0 S) using a steady state approach to evaluate the effects of climate change on gas hydrate stability. Present day conditions were modelled using published literature and compared with available measurements. Then, we simulated the effects of climate change on gas hydrate stability in 50 and 100 years on the basis of Intergovernmental Panel on Climate Change and National Aeronautics and Space Administration forecasts. An increase in temperature might cause the dissociation of gas hydrate that could strongly affect gas hydrate stability. Moreover, we found that the high seismicity of this area could have a strong effect on gas hydrate stability. Clearly, the Chilean margin should be considered as a natural laboratory for understanding the relationship between gas hydrate systems and complex natural phenomena, such as climate change, slope stability and earthquakes
Cortical Thickness variability in Multiple Sclerosis: The role of lesion segmentation and filling
Cortical Thickness (CTh) estimation from Magnetic Resonance Imaging (MRI) data of Multiple Sclerosis (MS) patients is biased at variable extent by the presence of white matter lesions. To overcome this limitation, several methods have been developed. In this study, we evaluate the impact on CTh measurements of different lesion corrections obtained combining three lesion segmentations (manual or automatic) with three intensity filling methods at whole brain and regional scale. © 2017 IEEE
A wide field-of-view, modular, high-density diffuse optical tomography system for minimally constrained three-dimensional functional neuroimaging
The ability to produce high-quality images of human brain function in any environment and during unconstrained movement of the subject has long been a goal of neuroimaging research. Diffuse optical tomography, which uses the intensity of back-scattered near-infrared light from multiple source-detector pairs to image changes in haemoglobin concentrations in the brain, is uniquely placed to achieve this goal. Here, we describe a new generation of modular, fibre-less, high-density diffuse optical tomography technology that provides exceptional sensitivity, a large dynamic range, a field-of-view sufficient to cover approximately one-third of the adult scalp, and also incorporates dedicated motion sensing into each module. Using in-vivo measures, we demonstrate a noise-equivalent power of 318 fW, and an effective dynamic range of 142 dB. We describe the application of this system to a novel somatomotor neuroimaging paradigm that involves subjects walking and texting on a smartphone. Our results demonstrate that wearable high-density diffuse optical tomography permits three-dimensional imaging of the human brain function during overt movement of the subject; images of somatomotor cortical activation can be obtained while subjects move in a relatively unconstrained manner, and these images are in good agreement with those obtained while the subjects remain stationary. The scalable nature of the technology we described here paves the way for the routine acquisition of high-quality, three-dimensional, whole-cortex diffuse optical tomography images of cerebral haemodynamics, both inside and outside of the laboratory environment, which has profound implications for neuroscience
- …
