1,373 research outputs found

    Physics reach of β\beta-beams and ν\nu-factories: the problem of degeneracies

    Full text link
    We discuss the physics reach of β\beta-Beams and ν\nu-Factories from a theoretical perspective, having as a guideline the problem of degeneracies. The presence of degenerate solutions in the measure of the neutrino oscillation parameters θ13\theta_{13} and δ\delta is, in fact, the main problem that have to be addressed in planning future neutrino oscillation experiments. If degeneracies are not (at least partially) solved, it will be almost impossible to perform, at any future facility, precise measurements of θ13\theta_{13} and/or δ\delta. After a pedagogical introduction on why degenerate solutions arise and how we can get rid of them, we analyze the physics reach of current β\beta-beam and ν\nu-factory configurations. The physics reach of the "standard" \BB is severely affected by degeneracies while a better result can be obtained by higher-γ\gamma setups. At the \NF the combination of Golden and Silver channels can solve the eightfold degeneracy down to sin⁡2θ13≤10−3\sin^2\theta_{13} \le 10^{-3}Comment: 5 pages, 6 epsfig; NUFACT'05, 21-26 June 2005, Frascat

    The functionalization of carbon nanotubes using a batch oscillatory flow reactor

    Get PDF
    This paper describes an efficient method for the functionalizing of multi-walled carbon nanotubes (MWCNT) using oscillatory flow mixing (OFM). A 3. l batch oscillatory flow reactor (OFR) was designed and constructed for pilot scale functionalization of MWCNT in order to potentially improve their compatibility within a thermoplastic polyphenylene sulphide (PPS) matrix. The OFM batch reactor consisted of a jacketed cylindrical vessel with a vertical axial oscillator that contained a series of baffled mixing plates. MWCNTs dispersed in dimethylformamide (DMF) were introduced into the reactor and a two stage reaction for functionalizing MWCNTs with PPS compatible groups was carried out under oscillation of baffles at elevated temperatures. Fluid mixing observations in the reactor showed that MWCNTs formed a uniform dispersion of aggregated flocs before and during the functionalization reaction. On completion of the reaction and cessation of the oscillation, the aggregated flocs of MWCNT rapidly sedimented at the bottom of the reactor; hence could be collected as a concentrated mass thereby facilitating the separation of functionalized MWCNTs from the solvent. The functionalized MWCNTs were dried and then characterized by transmission electron microscopy, infrared spectroscopy as well as thermal gravimetric analysis in order to investigate the extent of MWCNT functionalization. The characterization results confirmed the effective and relatively uniform functionalization of the MWCNTs despite formation of aggregates, indicating that OFM provides a viable approach for functionalizing MWCNTs

    Untangling CP Violation and the Mass Hierarchy in Long Baseline Experiments

    Get PDF
    In the overlap region, for the normal and inverted hierarchies, of the neutrino-antineutrino bi-probability space for νμ→νe\nu_\mu \to \nu_e appearance, we derive a simple identity between the solutions in the (sin⁡22θ13\sin^2 2\theta_{13}, sin⁡δ\sin \delta) plane for the different hierarchies. The parameter sin⁡22θ13\sin^2 2\theta_{13} sets the scale of the νμ→νe\nu_\mu \to \nu_e appearance probabilities at the atmospheric δmatm2≈2.4×10−3\delta m^2_{atm} \approx 2.4 \times 10^{-3} eV2^2 whereas sin⁡δ\sin \delta controls the amount of CP violation in the lepton sector. The identity between the solutions is that the difference in the values of sin⁡δ\sin \delta for the two hierarchies equals twice the value of sin⁡22θ13\sqrt{\sin^2 2\theta_{13}} divided by the {\it critical} value of sin⁡22θ13\sqrt{\sin^2 2\theta_{13}}. We apply this identity to the two proposed long baseline experiments, T2K and NOν\nuA, and we show how it can be used to provide a simple understanding of when and why fake solutions are excluded when two or more experiments are combined. The identity demonstrates the true complimentarity of T2K and NOν\nuA.Comment: 15 pages, Latex, 4 postscript figures. Submitted to New Journal of Physics, ``Focus on Neutrino Physics'' issu

    Degeneracies at a beta-Beam and a Super-Beam Facility

    Full text link
    The presence of degeneracies can considerably worsen the measure of the neutrino oscillation parameters θ13\theta_{13} and δ\delta. We study the physics reach of a specific ``CERN'' setup, using a standard β\beta-Beam and Super-Beam facility. These facilities have a similar sensitivity in both parameters. Their combination does not provide any dramatic improvement as expected due to their almost identical L/E ratio. We analyse if adding the correspondent disappearance channels can help in reducing the effect of degeneracies in the (θ13,δ)(\theta_{13},\delta) measure.Comment: 5 pages, 7 eps figure

    Study of the eightfold degeneracy with a standard β\beta-Beam and a Super-Beam facility

    Full text link
    The study of the eightfold degeneracy at a neutrino complex that includes a standard β\beta-Beam and a Super-Beam facility is presented for the first time in this paper. The scenario where the neutrinos are sent toward a Megaton water Cerenkov detector located at the Fr\'{e}jus laboratory (baseline 130 Km) is exploited. The performance in terms of sensitivity for measuring the continuous (θ13\theta_{13} and δ\delta) and discrete (sign[Δm232]{sign} [ \Delta m^2_{23} ] and sign[tan⁡(2θ23)]{sign} [\tan (2\theta_{23}) ]) oscillation parameters for the β\beta-Beam and Super-Beam alone, and for their combination has been studied. A brief review of the present uncertainties on the neutrino and antineutrino cross-sections is also reported and their impact on the discovery potential discussed
    • …
    corecore