385 research outputs found

    Comments on “A generic length-scale equation for geophysical turbulence models” by L. Umlauf and H. Burchard

    Get PDF
    Umlauf and Burchard (2003) present a generic length-scale equation... for use in two-equation models of turbulence. However, because of the traditional form used for the diffusion term, it can be used at present for only negative values of n. We show that a simple modification of the diffusion term is sufficient to insure a more universal generic length-scale equation that is valid for all values of m and n, including positive values of n. We also show that an appropriate combination of exponents m and n will enable the generic length-scale equation to simulate any desired length-scale equation..

    Northern Adriatic general circulation behaviour induced by heat fluxes variations due to possible climatic changes

    Get PDF
    The thermohaline circulation of the central-north Adriatic basin is investigated by means of a 3D hydrodynamic numerical model. Three different runs — where the surface heat fluxes annual average is respectively negative, slightly positive and slightly negative — are performed; the general circulation patterns are then discussed and depicted, also with the aid of the trajectories of numerical particles released during the integrations. Results confirm that surface heat fluxes can start and trigger the general circulation in the basin (both vertically and horizontally), even without prescribing other forcings. Particularly, when the annual budget of the heat fluxes is negative (i.e. the basin loses heat to the atmosphere)a horizontal cyclonic surface circulation is generated, characterized by a northward flow along the eastern coast and a southward return current system along the western one. From the vertical point of view, an antiestuarine circulation is established. A similar circulation pattern is depicted when the surface fluxes have a slightly negative annual budget. On the other hand, when the annual fluxes balance is positive the vertical circulation switches to estuarine and, as expected, the integrated circulation becomes anticyclonic. A modification in the heat fluxes budget is strictly related to a change in the water column turnover time of the Jabuka pit, the deepest meso-Adriatic depression: when the annual heat fluxes balance is negative but close to zero, the dense-water residence time in the pit becomes minimum and the water has a shorter turnover time, denoting a faster renewal compared to those exhibited in the other experiments

    Evaluating meteorological climate model inputs to improve coastal hydrodynamic studies

    Get PDF
    Abstract. This work compares meteorological results from different regional climate model (RCM) implementations in the Mediterranean area, with a focus on the northern Adriatic Sea. The need to use these datasets as atmospheric forcings (wind and atmospheric pressure fields) for coastal hydrodynamic models to assess future changes in the coastal hydrodynamics, is the basis of the presented analysis. It would allow the assessment of uncertainties due to atmospheric forcings in providing coastal current, surge and wave climate changes from future implementations of hydrodynamic models. Two regional climate models, with different spatial resolutions, downscaled from two different global climate models (whose atmospheric components are, respectively, ECHAM4 and ECHAM5), were considered. In particular, the RCM delivered wind and atmospheric pressure fields were compared with measurements at four stations along the Italian Adriatic coast. The analyses were conducted using a past control period, 1960–1990, and the A1B IPCC future scenario (2070–2100). The chosen scenario corresponds to a world of very rapid economic and demographic growth that peaks in mid-century, with a rapid introduction of new efficient technologies, which balance fossil and non-fossil resources (IPCC, 2007). Consideration is given to the accuracy of each model at reproducing the basic statistics and the trends. The role of models' spatial resolution in reproducing global and local scale meteorological processes is also discussed. The Adriatic Sea climate is affected by the orography that produces a strengthening of north-eastern katabatic winds like bora. Therefore, spatial model resolution, both for orography and for a better resolution of coastline (Cavaleri et al., 2010), is one of the important factors in providing more realistic wind forcings for future hydrodynamic models implementations. However, also the characteristics in RCM setup and parameterization can explain differences between the datasets. The analysis from an ensemble of model implementation would provide more robust indications on climatic wind and atmospheric pressure variations. The scenario-control comparison shows a general increase in the mean atmospheric pressure values while a decrease in mean wind speed and in extreme wind events is seen, particularly for the datasets with higher spatial resolution

    Simulation of a flash-flood event over the Adriatic Sea with a high-resolution atmosphere–ocean–wave coupled system

    Get PDF
    On the morning of September 26, 2007, a heavy precipitation event (HPE) affected the Venice lagoon and the neighbouring coastal zone of the Adriatic Sea, with 6-h accumulated rainfall summing up to about 360 mm in the area between the Venetian mainland, Padua and Chioggia. The event was triggered and maintained by the uplift over a convergence line between northeasterly flow from the Alps and southeasterly winds from the Adriatic Sea. Hindcast modelling experiments, using standalone atmospheric models, failed to capture the spatial distribution, maximum intensity and timing of the HPE. Here we analyze the event by means of an atmosphere-wave-ocean coupled numerical approach. The combined use of convection permitting models with grid spacing of 1 km, high-resolution sea surface temperature (SST) fields, and the consistent treatment of marine boundary layer fluxes in all the numerical model components are crucial to provide a realistic simulation of the event. Inaccurate representations of the SST affect the wind magnitude and, through this, the intensity, location and time evolution of the convergence zone, thus affecting the HPE prediction. © 2021, The Author(s)

    Coupled wave-2D hydrodynamics modeling at the Reno River mouth (Italy) under climate change scenarios

    Get PDF
    This work presents the results of the numerical study implemented for the natural area of Lido di Spina, a touristic site along the Italian coast of the North Adriatic Sea, close to the mouth of River Reno. High-resolution simulations of nearshore dynamics are carried out under climate change conditions estimated for the site. The adopted modeling chain is based on the implementation of multiple-nested, open-source numerical models. More specifically, the coupled wave-2D hydrodynamics runs, using the open-source TELEMAC suite, are forced at the offshore boundary by waves resulting from the wave model (SWAN) simulations for the Adriatic Sea, and sea levels computed following a joint probability analysis approach. The system simulates presentday scenarios, as well as conditions reflecting the high IPCC greenhouse concentration trajectory named RCP8.5 under predicted climate changes. Selection of sea storms directed from SE (Sirocco events) and E-NE (Bora events) is performed together with Gumbel analysis, in order to define ordinary and extreme sea conditions. The numerical results are here presented in terms of local parameters such as wave breaking position, alongshore currents intensity and direction and flooded area, aiming to provide insights on how climate changes may impact hydrodynamics at a site scale. Although the wave energy intensity predicted for Sirocco events is expected to increase only slightly, modifications of the wave dynamics, current patterns, and inland flooding induced by climate changes are expected to be significant for extreme conditions, especially during Sirocco winds, with an increase in the maximum alongshore currents and in the inundated area compared to past conditions. \ua9 2018 by the authors

    The response of the Ligurian and Tyrrhenian Seas to a summer Mistral event: A coupled atmosphere–ocean approach

    Get PDF
    In this paper the effect of a summer Mistral event on the Ligurian and Tyrrhenian Seas in the northwestern Mediterranean is discussed, using a coupled numerical model and satellite and in situ observations. The focus is on the spatial and temporal distribution of the ocean mixed layer response to the strong winds, and on how this is affected by atmosphere–ocean coupling. The model used is the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS®1), developed at the Naval Research Laboratory. This system includes an atmospheric sigma coordinate, non-hydrostatic model, coupled to a hydrostatic sigma-z level ocean model (Naval Coastal Ocean Model), using the Earth System Modeling Framework (ESMF). The model is run at high (km scale) resolution to capture the fine structure of wind jets and surface cooling. Two non-assimilating numerical experiments, coupled and uncoupled, are run for a 3-day period of a Mistral event, to examine more closely the impact of coupling on the surface flux and sea surface temperature (SST) fields. The cooling of SST up to 3 °C over 72 h in the coupled run significantly reduced the surface momentum and heat fluxes, relative to the uncoupled simulation, where the SST was kept fixed at the initial value. Mixed layer depths increase by as much as 30 m during the event. A heat budget analysis for the ocean is carried out to further explain and investigate the SST evolution. Shear-induced mixing in inertial waves is found to be important to the surface cooling. Effects of coupling on the atmospheric boundary layer are found to be significant, but overall the effect of coupling on the synoptic low pressure system is small

    Wave climate of the Adriatic Sea: a future scenario simulation

    Get PDF
    Abstract. We present a study on expected wind wave severity changes in the Adriatic Sea for the period 2070–2099 and their impact on extremes. To do so, the phase-averaged spectral wave model SWAN is forced using wind fields computed by the high-resolution regional climate model COSMO-CLM, the climate version of the COSMO meteorological model downscaled from a global climate model running under the IPCC-A1B emission scenario. Namely, the adopted wind fields are given with a horizontal resolution of 14 km and 40 vertical levels, and they are prepared by the Italian Aerospace Research Centre (CIRA). Firstly, in order to infer the wave model accuracy in predicting seasonal variability and extreme events, SWAN results are validated against a control simulation, which covers the period 1965–1994. In particular, numerical predictions of the significant wave height Hs are compared against available in-situ data. Further, a statistical analysis is carried out to estimate changes on wave storms and extremes during the simulated periods (control and future scenario simulations). In particular, the generalized Pareto distribution is used to predict changes of storm peak Hs for frequent and rare storms in the Adriatic Sea. Finally, Borgman's theory is applied to estimate the spatial pattern of the expected maximum wave height Hmax during a storm, both for the present climate and that of the future scenario. Results show a future wave climate in the Adriatic Sea milder than the present climate, even though increases of wave severity can occur locally

    Identification of Seismo-Volcanic Regimes at Whakaari/White Island (New Zealand) Via Systematic Tuning of an Unsupervised Classifier

    Get PDF
    We present an algorithm based on Self-Organizing Maps (SOM) and k-means clustering to recognize patterns in a continuous 12.5-year tremor time series recorded at Whakaari/White Island volcano, New Zealand (hereafter referred to as Whakaari). The approach is extendable to a variety of volcanic settings through systematic tuning of the classifier. Hyperparameters are evaluated by statistical means, yielding a combination of “ideal” SOM parameters for the given data set. Extending from this, we applied a Kernel Density Estimation approach to automatically detect changes within the observed seismicity. We categorize the Whakaari seismic time series into regimes representing distinct volcano-seismic states during recent unrest episodes at Whakaari (2012/2013, 2016, and 2019). There is a clear separation in classification results between background regimes and those representing elevated levels of unrest. Onset of unrest is detected by the classifier 6 weeks before the August 2012 eruption, and ca. 3.5 months before the December 2019 eruption, respectively. Regime changes are corroborated by changes in commonly monitored tremor proxies as well as with reported volcanic activity. The regimes are hypothesized to represent diverse mechanisms including: system pressurization and depressurization, degassing, and elevated surface activity. Labeling these regimes improves visualization of the 2012/2013 and 2019 unrest and eruptive episodes. The pre-eruptive 2016 unrest showed a contrasting shape and nature of seismic regimes, suggesting differing onset and driving processes. The 2016 episode is proposed to result from rapid destabilization of the shallow hydrothermal system, while rising magmatic gases from new injections of magma better explain the 2012/2013 and 2019 episodes
    • …
    corecore