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Comments on “A generic length-scale equation for
geophysical turbulence models” by L. Umlauf

and H. Burchard

by L. Kantha1 and S. Carniel2

1. Introduction

Umlauf and Burchard (2003) present a generic length-scale equation for the prognostic
quantity c 5 (cm

0 )pkmln for use in two-equation models of turbulence. However, because
of the traditional form used for the diffusion term, it can be used at present for only
negative values of n. We show that a simple modi� cation of the diffusion term is suf� cient
to insure a more universal generic length-scale equation that is valid for all values of m and
n, including positive values of n. We also show that an appropriate combination of
exponents m and n will enable the generic length-scale equation to simulate any desired
length-scale equation including those in the k-e, k-v, k-kl, k-kt, k-l and k-t models.

2. UB generic length-scale equation and polymorphism

Umlauf and Burchard (2003, hereafter UB) have recently presented a generic length-
scale equation for use in two-equation turbulence models. It is a conservation equation for
the quantity c 5 (cm

0 )pkmln involving the macro-length scale of turbulence l, and is of the
form
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where the � rst term on the r.h.s. is the term denoting down-the-gradient turbulent diffusion
of c; P is the shear production, G is the buoyancy production/destruction, and e is the
dissipation of turbulence kinetic energy (TKE). The quantitiessc , cm

0 , cc1, cc2 and cc3 are
closure constants and vt is the turbulent viscosity. The quantity k, the TKE, is given by the
conservation equation:
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where once again, the � rst term on the r.h.s. is the turbulent diffusion of k. The quantity sk
c

is another closure constant. sc and sk
c are Schmidt numbers. Along with the stability

functions that control the value of turbulent viscosity, Eqs. (1) and (2) constitute a
two-equation model of turbulence. We will follow the UB notation throughout, for
simplicity, even though we prefer the notation of Kantha (2003, hereafter K3).

The exponents p, m and n take particular values for the different turbulence length-scale
equations that have been used in the past: (i) k-e model: p 5 3, m 5 3

2
, n 5 21; (ii) k-v

model: p 5 21, m 5 1
2

, n 5 21; (iii) k-kt model: p 5 23, m 5 1
2

, n 5 1 and (iv) k-kl
model: p 5 0, m 5 1, n 5 1. Quantity v is the turbulence frequency and t 5 k/e is the
turbulence time scale. Thus, it must be possible to derive any of these length-scale
equations as a subset of a generic length-scale equation.However, the UB generic equation
fails for positive values of the exponent n (when m is chosen to be a nonzero, positive
integer, as UB did) and hence cannot simulate the k-kl and k-kt models. More importantly,
this generic length-scale equation, which is supposed to be a pseudo-length-scale equation
cannot be reduced to an equation for the turbulence macroscale, l, for which m 5 0 and
n 5 1! Moreover, the manner in which UB determine the closure constants leads to a
generic quantity devoid of any physical meaning.

The authors are part of the team (that includes Karsten Bolding) that has done a great
service to the ocean turbulence modeling community by developing and making freely
available the General Ocean Turbulence Model (GOTM, see www.gotm.net for the
downloadable version of the latest revision 3.0). The code is written in modern Fortran,
allows for easy testing of new ideas in turbulence modeling, and is readily included in 3-D
ocean models. However, the authors have overlooked the fact that, by a judicious choice of
the exponents m and n, their generic length-scale equation (included in the code at present)
can be made to simulate any length-scale equation used in the past, as outlined in detail
below.

The traditional way of determining the closure constants is to appeal to simple turbulent
� ows, where turbulence quantities are known with a high degree of certainty (for example,
see Mellor and Yamada, 1982). The model closure constants can be and were selected by
UB by applying the TKE and the generic length-scale equations to simple � ow situations
such as the logarithmic law-of-the-wall region of the turbulent boundary layer near a wall
(see UB for details; see also K3), where the behavior of turbulence is known with a good
degree of certainty. Thus,

~cm
0 !2 5 0.3, sc 5

n2k2

~cm
0 !2~cc2 2 cc1!

, cc1 5 m, d 5
22n

2m 1 n 2 2cc2
. (3)

The � rst two conditions are obtained by appealing to the logarithmic law of the wall, the
third one uses the Tennekes hypothesis in homogeneous shear � ow and the last one refers
to the decay of homogeneous turbulence where d is the decay rate with time of TKE (see
K3 or UB for details). The quantity k is the von Karman constant, with a traditional value
of 0.4, although aerodynamicists use a value of 0.41. Wind tunnel experiments show that d
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has a value slightly lower than 21, whereas theoretical considerations dictate that d 5 21
be the asymptotic value for high Reynolds number turbulence. UB chose d 5 21.2, while
K3 chooses d 5 21. From Eq. (3),

cc2 5 m 1 nS 1

2
1

1
dD , sc 5

0.533n

S 1

2
1

1
dD

(4)

where the numerical values of k and cm
0 , which are known with a great degree of certainty,

have been substituted. This leaves only sk
c to be determined (cc3 is irrelevant to the thrust

of these comments).
UB then appeal to the experiments on spatial decay of turbulence in a tank away from a

stirring grid that generates the turbulence at one end of the tank, as did Kantha (1988; 2003)
and Kantha and Clayson (2003). The spatial change of TKE and the length scale are known
from these experiments to be k 5 k0( z 2 z0)a and l 5 L( z 2 z0), with a 5 22 (a value
that can also be derived from theoretical arguments for asymptotic turbulence) and L
around 0.2 ( z is the distance from the grid and z0 is the virtual origin). Eqs. (1) and (2) give
for this � ow situation, where the principal balance is between dissipation and diffusion
terms (see UB, K3 or Kantha and Clayson (2003) for details):

~aL!2 5
2
3

~cm
0 !2Rsk

c, ~cm
0 !2Rsccc2 5 ~am 1 n!F S m 1

1
2D a 1 nG L2 (5)

where R 5 cm
0 /cm with cm determined from the speci� c algebraic closure model used.

It is here that UB deviate from the traditional approaches. They argue that since the
stirring grid experiments provide two constraints but there is only one closure constant sk

c

left undetermined, one of the exponents (either m or n, they choose n) must be determined
from Eq. (5), even if it means that the exponent must have a fractional value. They call this
approach “polymorphism,” and justify this approach by pointing out that the k-e model
provides an unjusti� ably high value for a for traditional values for the closure constants.
They do concede that the resulting quantity, c, has no de� nite physical meaning and may
just be a mathematical concoction. This approach is in sharp contrast to traditional
approaches where the length-scale equation is always written for a quantity that has a
well-known physical interpretation: the dissipation rate e in k-e models, the turbulence
frequency v in k-v models, the turbulence viscosity in k-kt models and the two-point
correlation in k-kl models (see K3).

We believe that a length-scale equation for a quantity without a well-known physical
meaning is undesirable, and most importantly, unnecessary. To show this, following K3,
we eliminate L, which is after all not known as precisely as a. (The experimental values
exhibit a large scatter around 0.2; see UB; see also Kantha, 1988.) This yields an equation
for the last undetermined constant sk

c:
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sk
c 5

3a2sccc2

2~am 1 n!F S m 1
1

2D a 1 nG 5
6sccc2

~2m 2 n!~2m 2 n 1 1!
(6)

after substitution of the well-known numerical value of 22 for a. Eqs. (4) and (6) provide
numerical values for the three constants sc , cc2 and sk

c .
If we choose the asymptotic value of 21 for d, we get:

sc 5 21.067n, cc2 5 m 2 n/2, (7)

sk
c 5

23.2n

~2m 2 n 1 1!
.

For the k-e model, m 5 3
2

and n 5 21 so that sc 5 1.067, cc2 5 2, and sk
c 5 0.64.

These values give L 5 0.18, not too far from the mean experimental value of around 0.2.
For the k-v model, m 5 1

2
, n 5 21 so that sc 5 1.067, cc2 5 1, and sk

c 5 1.067.
These values give L 5 0.23, once again not too far from the experimental value of around
0.2. The traditional values for the closure constants are sc 5 1.3, cc2 5 1.92, and sk

c 5

1.0 for the k-e model, and sc 5 2, cc2 5 0.833, and sk
c 5 2 for the k-v model (see the

tables in UB). The generic equation (1) is not valid for positive values of n and so the
equivalent values cannot be determined for k-kt and k-kl models. Nor is it possible to put
m 5 0 and n 5 1, and derive the constants in an equation for the length scale l itself.

On the other hand, the value of 21.2 chosen by UB for d gives:

sc 5 21.6n, cc2 5 m 2 n/3, sk
c 5

23.2n~3m 2 n!

~2m 2 n!~2m 2 n 1 1!
. (8)

For the k-e model, this gives sc 5 1.6, cc2 5 1.833, sk
c 5 0.88, and L 5 0.21, whereas

for the k-v model, sc 5 1.6, cc2 5 0.833, sk
c 5 1.333, and L 5 0.26. Once again L

values are not too far from the experimental value of around 0.2.
Clearly, by a readjustment of one of the closure constants, we can achieve conformity

with all the above experimental results in both the k-e and k-v models. Also, if we do not
insist on L being exactly 0.2, there is no need for polymorphism and nonphysical quantity
c. A downward readjustment of the constant sk

c is enough to assure that the k-e model will
work for stirring grid turbulence and hence can simulate the effect of wave breaking in
oceanic mixed layer models. The inability of the traditional k-e model to simulate wave
breaking was cited by UB to be the principal motivation for the adoption of “polymor-
phism.”

3. Form of the diffusion term in the UB generic equation

The generic length-scale equation of UB cannot be used when the exponent n is positive
(m is a positive integer for traditional length-scale models) since this leads to negative
values for some constants, which must remain positive-de� nite. This de� ciency can be
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traced directly to the form of the diffusion term used (see K3 for details). Brie� y, the
diffusion term must be modi� ed. The form of the additional terms needed in the generic
equation can be derived by appealing to the length-scale equation in k-e models.
Admittedly, this makes the generic equation mathematically equivalent to the k-e model,
but the utility of the former lies in the need in some applications for an equation with
positive values for the exponent n. It is well known that it is dif� cult to extend k-e models
to the boundary and the k-v model has dif� culty satisfying the boundary conditions at the
outer edge of a turbulent layer, and for both these models n is negative. We will not use up
space here for describing the general form of the diffusion term needed in a generic
equation of general validity, but instead refer the reader to K3. We do feel that the
introductionof “polymorphism” to make the generic length-scale equation with traditional
diffusion term “work,” when the same equation with appropriate modi� cation of the
diffusion term will work quite well with any values for the exponents m and n (including
positive values for n), is unnecessary.

UB state that their generic model works best for m 5 1 and n 5 20.67. Then c ;
kl22/3 5 (k3/2l2 1)2/3 5 e2/3. In other words, their generic equation works best for a
quantity eq when q 5 2

3
. It can be shown that an equation for eq with the traditional form of

the diffusion term is equivalent to a modi� ed equation for e itself:
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q 2 1
e S ]e

]zD
2

1
e
k

~c*e1P 1 c*e3G 2 c*e2e! (9)

where c*e1 5 ce1/q, c*e2 5 ce2/q, c*e3 5 ce3/q, and the second term on the r.h.s. is an
additional diffusion term. Clearly, the UB generic equation, in this case at least, is an
equation for e but with a modi� ed diffusion term! This is in perfect agreement with the
conclusions of K3, who argues that the diffusion term must be modi� ed to make a generic
length-scale equation work for all values of exponents m and n. Note however, that even if
we put q equal to 1, Eq. (9) will still simulate the rate of decay in stirring grid turbulence, as
long as sk

c is chosen appropriately, as was shown in Section 2.
Because of the additional term in Eq. (9) the constraints on closure constants now

become

~cm
0 !2 5 0.3, c*e1 5

3

2
, c*e2 5

3

2
2 S 1

2
1

1
dD

se 5
2k2q

~cm
0 !2~c*e2 2 c*e1!

5
2k2q

~cm
0 !2S1

2
1

1
dD

(10)

~aL!2 5
2
3

~cm
0 !2Rsk

~cm
0 !2Rsec*e2 5 S 3

2
a 2 1D F ~2a 2 1! 1 ~q 2 1!S 3

2
a 2 1D G L2.
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Following UB, we put R 5 1 here. Using the value of d 5 21.2 used by UB, we get c*e1 5

1.5, c*e2 5 1.833 and se 5 1.6q. Using a 5 22 and L 5 0.2, we get sk 5 0.8. The last
relationship in Eq. (10) then gives q 5 2

3
. This is precisely the value used by UB in their

best-performing generic equation. Note that the value of se is, therefore, 1.067 and the
corresponding values of ce1 and ce2 in the unmodi� ed k-e length-scale equation Eq. (1) are
1.0 and 1.22, in agreement with the tabulated values for the generic UB equation with m 5

1 and n 5 20.67.

4. A more universal generic length-scale equation

If we accept the notion that a generic length-scale equation must be valid for all values of
exponents m and n (including positive values for n), and should be written for a quantity
that has some physical meaning, then the UB form is unacceptable, and we must examine
the form of the diffusion term in Eq. (1) as indeed K3 did. However, while the form of the
diffusion terms suggested by K3 works, one could argue that the generic equation derived
by K3 is nothing but a transformed k-e equation. This raises the question: what is the
simplest modi� cation of the diffusion term that will achieve the same goal? Clearly, the
traditional form does not work for positive values for the exponent n. Eq. (9) provides a
clue. We could generalize the form of the additional term in Eq. (9) and write the generic
length-scale equation as:

]c

]t
1

]

]xk
~Ukc! 5

]

]z S v t

sc

]c

]z D 1
v t

sc

j

c S ]c

]z D
2

1
c

k
~cc1P 1 cc3G 2 cc2e!. (11)

This equation represents a necessary and suf� cient modi� cation of the traditional form of
the length-scale equation to make it applicable to positive values of n. (It can be shown that
terms involving just ]k/] z or ]l/] z are not suf� cient.) In particular, it works for the
length-scale l itself (m 5 0, n 5 1). The new constraints on the closure constants can be
shown to be:

~cm
0 !2 5 0.3, cc1 5 m, cc2 5 m 1 nS 1

2
1

1
dD

sc 5
n2k2~1 1 j!

~cm
0 !2~cc2 2 cc1!

5
nk2~1 1 j!

~cm
0 !2S 1

2
1

1
dD

(12)

~aL!2 5
2

3
~cm

0 !2Rsk
c

~cm
0 !2Rsccc2 5 ~ma 1 n!F S m 1

1
2D a 1 n 1 j~ma 1 n!G L2.

From Eq. (12), an expression can be derived for j:
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j 5

2RnFm 1 nS1
2

1
1
dDG 1 ~ma 1 n!F Sm 1

1
2Da 1 nGS1

2
1

1
dD SL

kD
2

RnFm 1 nS1

2
1

1
dD G 2 ~ma 1 n!2S1

2
1

1
dDSL

kD
2 (13)

where R 5 1, a 5 22 and L 5 0.2, k 5 0.4 can be substituted. sk
c 5 0.8 irrespective of

the value of m and n. For the k-e model, if we use d 5 21.2, we recover Eq. (9), since j

becomes 2 1
3

and sc 5 1.067.
Table 1 shows the resulting values for j and sc for d 5 21.2 and 21, and for two

values of L (0.2 and 0.224) or equivalently two different values for sk
c (0.8 and 1.0). Note

that for the k-kt model, the length-scale equation is trivially satis� ed for the stirring grid
turbulence (]k/] z 5 0 and cc2 5 0, and hence both sides of the length-scale equation
become zero) and hence adds no new information, and the last relation in Eq. (12) cannot
be used. Since sc ; 2(1 1 j), any reasonable value of j can be used as long as j , 21. If,
for example, we use j 5 22, sc 5 1.067. For the k-e model, for sk

c 5 0.8 (equivalently

Table 1. The model constants for different values of L and d.

Model L d cc1 cc2 j sc sk
c

k-e 0.2 21.2 1.5 1.833 20.333 1.0667 0.8
k-v 0.2 21.2 0.5 0.833 20.667 0.5333 0.8
k-kl 0.2 21.2 1.0 0.667 21.111 0.18 0.8
k-kt 0.2 21.2 0.5 0 , 21 21.6(1 1 j) 0.8
k-l 0.2 21.2 0 20.333 21.333 0.5333 0.8
k-t 0.2 21.2 20.5 20.833 21.333 0.5333 0.8

k-e 0.2 21 1.5 2 — — 0.8
k-v 0.2 21 0.5 1 20.5 0.5333 0.8
k-kl 0.2 21 1.0 0.5 21.2 0.2133 0.8
k-kt 0.2 21 0.5 0 , 21 21.067(1 1 j) 0.8
k-l 0.2 21 0 20.5 21.333 0.356 0.8
k-t 0.2 21 20.5 21 21.5 0.5333 0.8

k-e 0.224 21.2 1.5 1.833 20.07 1.486 1.0
k-v 0.224 21.2 0.5 0.833 20.5 0.8 1.0
k-kl 0.224 21.2 1.0 0.667 21.135 0.216 1.0
k-kt 0.224 21.2 0.5 0 , 21 21.6(1 1 j) 1.0
k-l 0.224 21.2 0 20.333 21.455 0.728 1.0
k-t 0.224 21.2 20.5 20.833 21.5 0.8 1.0

k-e 0.224 21 1.5 2 22.25 1.3333 1.0
k-v 0.224 21 0.5 1 20.167 0.889 1.0
k-kl 0.224 21 1.0 0.5 21.238 0.254 1.0
k-kt 0.224 21 0.5 0 , 21 21.067(1 1 j) 1.0
k-l 0.224 21 0 20.5 21.455 0.485 1.0
k-t 0.224 21 20.5 21 21.833 0.889 1.0
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L 5 0.2), the denominator in Eq. (13) vanishes. This arises simply from the fact that we
insist that L be 0.2, when we do not of course know its value precisely.

However, since there is no reason to insist that L be precisely 0.2, and some variance
around this value can be tolerated, we can eliminate L from the last two relations in
Eq. (12) and obtain expressions for sc and sk

c:

sc 5
nk2~1 1 j!

~cm
0 !2S 1

2
1

1
dD

, sk
c 5

1.5a2scF m 1 nS 1
2

1
1
dD G

~ma 1 n!F S m 1
1

2D a 1 n 1 j~ma 1 n!G (14)

where a 5 22. Note that these values are independent of R. Table 2 shows the dependence
of sc and sk

c (and consequentlyL) on parameter j. Clearly, when n is positive, the value of
j must be nonzero, whereas it is possible to have j 5 0 for negative n values. In any case,
the generic equation must have a modi� ed diffusion term if it is to be applicable for all
values of m and n. An added advantage of this new approach is that an equation can be
written just for the macro-length scale of turbulence l (m 5 0, n 5 1), which has not been
possible hitherto, since the traditional form of the diffusion term will not work for positive
n values!

The UB generic equation in GOTM should therefore be replaced by Eq. (11), with the
parameter j chosen appropriately (which will in turn determine the values of the Schmidt
numbers—see Table 2), in which case, c can represent a quantity with physical meaning,
and any length-scale equation used in the past can be simulated. Alternatively, Eq. (11) is
equivalent to a conservation equation with the traditional form for the diffusion term, but
for the quantity cq, where q 5 1 1 j must be chosen from Table 2, according to the value
desired for sk

c . In other words, in the UB generic equation,m and n can be chosen such that
km 5 (km9)q, ln 5 (ln9)q, where m9 and n9 correspond to values used in traditional

Table 2. The model constants for an arbitrary value of the parameter j.

Model d cc1 cc2 j sc sk
c L

k-e 21.2 1.5 1.833 . 21 1.6(1 1 j) 0.888(1 1 j)/(1 1 0.8j) (0.05sk
c)1 /2

k-v 21.2 0.5 0.833 . 21 1.6(1 1 j) 1.333(1 1 j)/(1 1 0.67j) (0.05sk
c)1 /2

k-kl 21.2 1.0 0.667 , 21 21.6(1 1 j) 23.2(1 1 j)/(1 1 0.5j) (0.05sk
c)1 /2

k-kt 21.2 0.5 0 , 21 21.6(1 1 j) Arbitrary (0.05sk
c)1 /2

k-l 21.2 0 20.333 , 21 21.6(1 1 j) 3.2(1 1 j)/j (0.05sk
c)1 /2

k-t 21.2 20.5 20.833 , 21 21.6(1 1 j) 4.0(1 1 j)/(1 1 2j) (0.05sk
c)1 /2

k-e 21 1.5 2 . 21 1.067(1 1 j) 0.640(1 1 j)/(1 1 0.8j) (0.05sk
c)1 /2

k-v 21 0.5 1 . 21 1.067(1 1 j) 1.067(1 1 j)/(1 1 0.67j) (0.05sk
c)1 /2

k-kl 21 1.0 0.5 , 21 21.067(1 1 j) 21.6(1 1 j)/(1 1 0.8j) (0.05sk
c)1 /2

k-kt 21 0.5 0 , 21 21.067(1 1 j) Arbitrary (0.05sk
c)1 /2

k-l 21 0 20.5 , 21 21.067(1 1 j) 3.2(1 1 j)/j (0.05sk
c)1 /2

k-t 21 20.5 21 , 21 21.067(1 1 j) 3.2(1 1 j)/(1 1 2j) (0.05sk
c)1 /2

700 [61, 5Journal of Marine Research



length-scale models (for example, for the k-e model, m9 5 3
2

, n9 5 21, so that if we
choose j 5 2 1

3
so that sk

c 5 0.8, then m 5 1, n 5 2 2
3

and q 5 2
3

). In this manner, any
traditional length-scale equation can be simulated. Table 3 shows the parameters that are
needed in the UB generic equation to simulate the desired length-scale equation (for their
chosen values of 21.2 for d, 0.8 for sk

c or equivalently0.2 for L).

5. Concluding remarks

We have shown that returning of a closure constant in the traditional k-e model can
make it simulate the spatial decay of stirring grid turbulence. Not insisting that L be
precisely 0.2 obviates both the need for the “polymorphic” approach and a general
length-scale equation for a quantity without physical meaning. Also, the generic length-
scale equation proposed by UB, which can now be used only for negative values of the
exponent n can be made more universally applicable by an appropriate modi� cation of the
diffusion term. We suggest that the utility of GOTM will be greatly enhanced if the model
parameters are chosen according to Table 3.

It would also be useful to have Langmuir turbulence included. Earlier work by Kantha
and Clayson (2003) suggests that modi� ed TKE and generic length-scale equations of the
form

]k

]t
1

]

]xk
~Ukk! 5

]

]z S vt

sk
c

]k

]zD 1 ~P 1 PL 1 G 2 e! (15)
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]

]xk
~Ukw! 5

]

]z S v t
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]w

]z D 1
w

k
~cw1P 1 cw4PL 1 cw3G 2 cw2e! (16)

where the Langmuir turbulence production term PL is given by

PL 5 v tS ]U1

]z

]US1

]z
1

]U2

]z

]US2

]z D , (17)

US1 and US2 being the two componentsof Stokes drift velocity of the surface gravity wave,
are needed. The quantity w 5 cq 5 [(cm

0 )pkm9ln9]q 5 (cm
0 )pkmln. The values of p, m, n

and q are shown in Table 3. Note that cw1 5 qcc1 . . . Eq. (16) is of course equivalent to

Table 3. UB model parameter values.

Model p m n q cc1 cc2 sk
c sc

k-e 2 1 2 2/3 2/3 1 11/9 0.8 1.0667
k-v 2 1/3 1/6 2 1/3 1/3 1/6 5/18 0.8 0.5333
k-kl 0 2 1/9 2 1/9 2 1/9 2 1/9 2 2/27 0.8 0.178
k-kt 3/2 2 1/4 2 1/2 2 1/2 2 1/4 2 1/12 0.8 0.8
k-l 0 0 2 1/3 2 1/3 0 1/9 0.8 0.5333
k-t 0 1/6 2 1/3 2 1/3 1/6 5/18 0.8 0.5333
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(18)

where cc1 5 m9, cc2 5 m9 2 n9/3, cc4 5 m9 1 3n9; the value of cc3 depends on the
ratio of the stability functions for momentum and scalar diffusivities and hence is a
function of speci� c closure (such as Mellor and Yamada, 1982 and Kantha and Clayson,
1994).
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