6,340 research outputs found
Disruption to control network function correlates with altered dynamic connectivity in the wider autism spectrum.
Autism is a common developmental condition with a wide, variable range of co-occurring neuropsychiatric symptoms. Contrasting with most extant studies, we explored whole-brain functional organization at multiple levels simultaneously in a large subject group reflecting autism's clinical diversity, and present the first network-based analysis of transient brain states, or dynamic connectivity, in autism. Disruption to inter-network and inter-system connectivity, rather than within individual networks, predominated. We identified coupling disruption in the anterior-posterior default mode axis, and among specific control networks specialized for task start cues and the maintenance of domain-independent task positive status, specifically between the right fronto-parietal and cingulo-opercular networks and default mode network subsystems. These appear to propagate downstream in autism, with significantly dampened subject oscillations between brain states, and dynamic connectivity configuration differences. Our account proposes specific motifs that may provide candidates for neuroimaging biomarkers within heterogeneous clinical populations in this diverse condition
Citizen science and natural resource governance: program design for vernal pool policy innovation
Effective natural resource policy depends on knowing what is needed to sustain a resource and building the capacity to identify, develop, and implement flexible policies. This retrospective case study applies resilience concepts to a 16-year citizen science program and vernal pool regulatory development process in Maine, USA. We describe how citizen science improved adaptive capacities for innovative and effective policies to regulate vernal pools. We identified two core program elements that allowed people to act within narrow windows of opportunity for policy transformation, including (1) the simultaneous generation of useful, credible scientific knowledge and construction of networks among diverse institutions, and (2) the formation of diverse leadership that promoted individual and collective abilities to identify problems and propose policy solutions. If citizen science program leaders want to promote social-ecological systems resilience and natural resource policies as outcomes, we recommend they create a system for internal project evaluation, publish scientific studies using citizen science data, pursue resources for program sustainability, and plan for leadership diversity and informal networks to foster adaptive governance. Effective natural resource policy depends on knowing what is needed to sustain a resource and building the capacity to identify, develop, and implement flexible policies. This retrospective case study applies resilience concepts to a 16-year citizen science program and vernal pool regulatory development process in Maine, USA. We describe how citizen science improved adaptive capacities for innovative and effective policies to regulate vernal pools. We identified two core program elements that allowed people to act within narrow windows of opportunity for policy transformation, including (1) the simultaneous generation of useful, credible scientific knowledge and construction of networks among diverse institutions, and (2) the formation of diverse leadership that promoted individual and collective abilities to identify problems and propose policy solutions. If citizen science program leaders want to promote social-ecological systems resilience and natural resource policies as outcomes, we recommend they create a system for internal project evaluation, publish scientific studies using citizen science data, pursue resources for program sustainability, and plan for leadership diversity and informal networks to foster adaptive governance
Deep Chronnectome Learning via Full Bidirectional Long Short-Term Memory Networks for MCI Diagnosis
Brain functional connectivity (FC) extracted from resting-state fMRI
(RS-fMRI) has become a popular approach for disease diagnosis, where
discriminating subjects with mild cognitive impairment (MCI) from normal
controls (NC) is still one of the most challenging problems. Dynamic functional
connectivity (dFC), consisting of time-varying spatiotemporal dynamics, may
characterize "chronnectome" diagnostic information for improving MCI
classification. However, most of the current dFC studies are based on detecting
discrete major brain status via spatial clustering, which ignores rich
spatiotemporal dynamics contained in such chronnectome. We propose Deep
Chronnectome Learning for exhaustively mining the comprehensive information,
especially the hidden higher-level features, i.e., the dFC time series that may
add critical diagnostic power for MCI classification. To this end, we devise a
new Fully-connected Bidirectional Long Short-Term Memory Network (Full-BiLSTM)
to effectively learn the periodic brain status changes using both past and
future information for each brief time segment and then fuse them to form the
final output. We have applied our method to a rigorously built large-scale
multi-site database (i.e., with 164 data from NCs and 330 from MCIs, which can
be further augmented by 25 folds). Our method outperforms other
state-of-the-art approaches with an accuracy of 73.6% under solid
cross-validations. We also made extensive comparisons among multiple variants
of LSTM models. The results suggest high feasibility of our method with
promising value also for other brain disorder diagnoses.Comment: The paper has been accepted by MICCAI201
National Foreclosure Mitigation Counseling Program Evaluation: Final Report, Rounds 3 Through 5
The Urban Institute completed a four-year evaluation of Rounds 3 through 5 of the National Foreclosure Mitigation Counseling (NFMC) program. Using a representative NFMC sample of 137,000 loans and a comparison non-NFMC sample of 103,000 loans, the Urban Institute was able to employ robust statistical techniques to isolate the impact of NFMC counseling on loan performance through June 2013.The final evaluation of Rounds 3 through 5 conducted by Urban Institute indicates that the NFMC program continues to have positive effects for homeowners participating in the program Counseled homeowners were more likely to cure a serious delinquency or foreclosure with a modification or other type cure, stay current after obtaining a cure, and for NFMC clients who cured a serious delinquency, avoid foreclosure altogether
Recommended from our members
Aberrant activity in conceptual networks underlies N400 deficits and unusual thoughts in schizophrenia.
BackgroundThe N400 event-related potential (ERP) is triggered by meaningful stimuli that are incongruous, or unmatched, with their semantic context. Functional magnetic resonance imaging (fMRI) studies have identified brain regions activated by semantic incongruity, but their precise links to the N400 ERP are unclear. In schizophrenia (SZ), N400 amplitude reduction is thought to reflect overly broad associations in semantic networks, but the abnormalities in brain networks underlying deficient N400 remain unknown. We utilized joint independent component analysis (JICA) to link temporal patterns in ERPs to neuroanatomical patterns from fMRI and investigate relationships between N400 amplitude and neuroanatomical activation in SZ patients and healthy controls (HC).MethodsSZ patients (n = 24) and HC participants (n = 25) performed a picture-word matching task, in which words were either matched (APPLE→apple) by preceding pictures, or were unmatched by semantically related (in-category; IC, APPLE→lemon) or unrelated (out of category; OC, APPLE→cow) pictures, in separate ERP and fMRI sessions. A JICA "data fusion" analysis was conducted to identify the fMRI brain regions specifically associated with the ERP N400 component. SZ and HC loading weights were compared and correlations with clinical symptoms were assessed.ResultsJICA identified an ERP-fMRI "fused" component that captured the N400, with loading weights that were reduced in SZ. The JICA map for the IC condition showed peaks of activation in the cingulate, precuneus, bilateral temporal poles and cerebellum, whereas the JICA map from the OC condition was linked primarily to visual cortical activation and the left temporal pole. Among SZ patients, fMRI activity from the IC condition was inversely correlated with unusual thought content.ConclusionsThe neural networks associated with the N400 ERP response to semantic violations depends on conceptual relatedness. These findings are consistent with a distributed network underlying neural responses to semantic incongruity including unimodal visual areas as well as integrative, transmodal areas. Unusual thoughts in SZ may reflect impaired processing in transmodal hub regions such as the precuneus, leading to overly broad semantic associations
A longitudinal investigation of the relationship between unconditional positive self-regard and posttraumatic growth
The present study investigated whether unconditional positive self-regard (UPSR) is associated with subsequent posttraumatic growth (PTG) following the experience of a traumatic life event. A total of 143 participants completed an online questionnaire to assess the experience of traumatic life events, posttraumatic stress, well-being and UPSR (Time 1). Three months later, 76 of the participants completed measures of well-being and perceived PTG (Time 2). Analyses were conducted to test for association between UPSR at Time 1 and perceptions of PTG at Time 2. Results showed that higher UPSR at T1 was associated with higher perceived PTG at Time 2. To measure actual growth, individual differences in well-being were computed between Time 1 and Time 2. Results showed that higher UPSR at T1 was associated with higher actual PTG. Implications of these findings are discussed and future directions for research in this area considered. Specifically, results are consistent with a person-centered understanding of therapeutic approaches to the facilitation of PT
Improving Performance of Iterative Methods by Lossy Checkponting
Iterative methods are commonly used approaches to solve large, sparse linear
systems, which are fundamental operations for many modern scientific
simulations. When the large-scale iterative methods are running with a large
number of ranks in parallel, they have to checkpoint the dynamic variables
periodically in case of unavoidable fail-stop errors, requiring fast I/O
systems and large storage space. To this end, significantly reducing the
checkpointing overhead is critical to improving the overall performance of
iterative methods. Our contribution is fourfold. (1) We propose a novel lossy
checkpointing scheme that can significantly improve the checkpointing
performance of iterative methods by leveraging lossy compressors. (2) We
formulate a lossy checkpointing performance model and derive theoretically an
upper bound for the extra number of iterations caused by the distortion of data
in lossy checkpoints, in order to guarantee the performance improvement under
the lossy checkpointing scheme. (3) We analyze the impact of lossy
checkpointing (i.e., extra number of iterations caused by lossy checkpointing
files) for multiple types of iterative methods. (4)We evaluate the lossy
checkpointing scheme with optimal checkpointing intervals on a high-performance
computing environment with 2,048 cores, using a well-known scientific
computation package PETSc and a state-of-the-art checkpoint/restart toolkit.
Experiments show that our optimized lossy checkpointing scheme can
significantly reduce the fault tolerance overhead for iterative methods by
23%~70% compared with traditional checkpointing and 20%~58% compared with
lossless-compressed checkpointing, in the presence of system failures.Comment: 14 pages, 10 figures, HPDC'1
Joint and individual analysis of breast cancer histologic images and genomic covariates
A key challenge in modern data analysis is understanding connections between
complex and differing modalities of data. For example, two of the main
approaches to the study of breast cancer are histopathology (analyzing visual
characteristics of tumors) and genetics. While histopathology is the gold
standard for diagnostics and there have been many recent breakthroughs in
genetics, there is little overlap between these two fields. We aim to bridge
this gap by developing methods based on Angle-based Joint and Individual
Variation Explained (AJIVE) to directly explore similarities and differences
between these two modalities. Our approach exploits Convolutional Neural
Networks (CNNs) as a powerful, automatic method for image feature extraction to
address some of the challenges presented by statistical analysis of
histopathology image data. CNNs raise issues of interpretability that we
address by developing novel methods to explore visual modes of variation
captured by statistical algorithms (e.g. PCA or AJIVE) applied to CNN features.
Our results provide many interpretable connections and contrasts between
histopathology and genetics
Open borders, closed minds: the discursive construction of national identity in North Cyprus
The article investigates the discursive construction of a Turkish Cypriot national
identity by the newspapers in North Cyprus. It questions the representation and
reconstruction processes of national identity within the press and examines the
various practices employed to mobilize readers around certain national imaginings.
Using Critical Discourse Analysis, the article analyses news reports of the opening of
border crossings in Cyprus in 2003, based on their content, the strategies used in the
production of national identity and the linguistic means employed in the process. In this
way, the nationalist tendencies embedded in news discourses, as well as discriminatory
and exclusive practices, are sought out
The METCRAX II Field Experiment: A Study of Downslope Windstorm-Type Flows in Arizona\u2019s Meteor Crater
The second Meteor Crater Experiment (METCRAX II) was conducted in October 2013 at Arizona\u2019s Meteor Crater. The experiment was designed to investigate nighttime downslope windstorm 12type flows that form regularly above the inner southwest sidewall of the 1.2-km diameter crater as a southwesterly mesoscale katabatic flow cascades over the crater rim. The objective of METCRAX II is to determine the causes of these strong, intermittent, and turbulent inflows that bring warm-air intrusions into the southwest part of the crater. This article provides an overview of the scientific goals of the experiment; summarizes the measurements, the crater topography, and the synoptic meteorology of the study period; and presents initial analysis results
- …
