101 research outputs found

    Efficient Java Code Generation of Security Protocols Specified in AnB/AnBx

    Get PDF
    The implementation of security protocols is challenging and error-prone, as experience has proved that even widely used and heavily tested protocols like TLS and SSH need to be patched every year due to low-level implementation bugs. A model-driven development approach allows automatic generation of an application, from a simpler and abstract model that can be formally verified. In this work we present the AnBx compiler, a tool for automatic generation of Java code of security protocols specified in the popular Alice & Bob notation, suitable for agile prototyping. In contrast with the existing tools, the AnBx compiler uses a simpler specification language and computes the consistency checks that agents has to perform on reception of messages. This is an important feature for robust implementations. Moreover, the tool applies various optimization strategies to achieve efficiency both at compile time and at run time. A support library interfaces the Java Cryptographic Architecture allowing for easy customization of the application

    A Mechanized Model of the Theory of Objects

    Get PDF
    In this paper we present a formalization of Abadi's and Cardelli's theory of ob jects in the interactive theorem prover Isabelle/HOL. Our motivation is to build a mechanized HOL-framework for the analysis of a functional calculus for distributed ob jects. In particular, we present (a) a formal model of ob jects and its operational semantics based on de Bruijn indices (b) a parallel reduction relation for ob jects (c) the proof of confluence for the theory of ob jects reusing Nipkow's HOL-framework for the lambda calculus. We expect this framework to be highly reusable and allow further development and mechanized proofs of various aspects of ob ject theory, e.g., distribution, aspect orientation, typing

    Neogene strike-slip faulting in Sakhalin and the Japan Sea opening

    Get PDF
    Laurent Jolivet est Professeur à l'Université d'Orléans au 1er Septembre 2009International audienceWe describe structural data from a 2000 km N-S dextral strike-slip zone extending from northern Sakhalin to the southeast corner of the Japan Sea. Satellite images, field data, and focal mechanisms of earthquakes in Sakhalin are included in the interpretation. Since Miocene time the deformation in Sakhalin has been taken up by N-S dextral strike-slip faults with a reverse component and associated en e'chelon folds. Narrow en échelon Neogene basins were formed along strike-sup faults and were later folded in a second stage of deformation. We propose a model of basin formation along extension al faults delimitating dominos between two major strike-slip faults, and subsequent counterclockwise rotation of the dominos in a dextral transpressional regime, basins becoming progressively oblique to the direction of maximum horizontal compression and undergoing shortening. The association of both dextral and compressional focal mechanisms of earthquakes indicates that the same transpressional regime still prevails today in Sakhalin. We present fault set measurements undertaken in Noto Peninsula and Yatsuo Basin at the southern end of the Sakhalin-East Japan Sea strike-slip zone. Early and middle Miocene formations recorded the same transtensional regime as observed along the west coast of NE Honshu. During the early and middle Miocene the strike-slip regime was transpressional to the north in Sakhalin and Hokkaido, and transtensional to the south along the west coast of NE Honshu as far as Noto Peninsula and Yatsuo basin. Dextral motion accommodated the opening of the Japan Sea as a pull-apart basin, with the Tsushima fault to the west. The opening of the Japan Sea ceased at the end of the middle Miocene when transtension started to change to E-W compression in the Japan arc. Subduction of the Japan Sea lithosphere under the Japan arc started 1.8 Ma ago. The evolution of the stress regime from transtensional to compressional in the southern part of the strike-slip zone is related to the inception of the subduction of the young Philippine Sea Plate lithosphere under the Japan arc during the late Miocene. Subduction related extension is a necessary condition for the opening of the Japan Sea. Two possible mechanisms can account for dextral shear in this area: (1) counterclockwise rotation of crustal blocks due to the collision of India with Asia, (2) extrusion of the Okhotsk Sea block squeezed between the North America and Eurasia plates
    • 

    corecore