228 research outputs found

    Lagrangian Floer superpotentials and crepant resolutions for toric orbifolds

    Full text link
    We investigate the relationship between the Lagrangian Floer superpotentials for a toric orbifold and its toric crepant resolutions. More specifically, we study an open string version of the crepant resolution conjecture (CRC) which states that the Lagrangian Floer superpotential of a Gorenstein toric orbifold X\mathcal{X} and that of its toric crepant resolution YY coincide after analytic continuation of quantum parameters and a change of variables. Relating this conjecture with the closed CRC, we find that the change of variable formula which appears in closed CRC can be explained by relations between open (orbifold) Gromov-Witten invariants. We also discover a geometric explanation (in terms of virtual counting of stable orbi-discs) for the specialization of quantum parameters to roots of unity which appears in Y. Ruan's original CRC ["The cohomology ring of crepant resolutions of orbifolds", Gromov-Witten theory of spin curves and orbifolds, 117-126, Contemp. Math., 403, Amer. Math. Soc., Providence, RI, 2006]. We prove the open CRC for the weighted projective spaces X=P(1,,1,n)\mathcal{X}=\mathbb{P}(1,\ldots,1,n) using an equality between open and closed orbifold Gromov-Witten invariants. Along the way, we also prove an open mirror theorem for these toric orbifolds.Comment: 48 pages, 1 figure; v2: references added and updated, final version, to appear in CM

    Symplectic involutions on deformations of K3^[2]

    Full text link
    Let X be a Hyperk\"{a}hler variety deformation equivalent to the Hilbert square on a K3 surface and let f be an involution preserving the symplectic form. We prove that the fixed locus of f consists of 28 isolated points and 1 K3 surface, moreover the anti-invariant lattice of the induced involution on H^2(X,Z) is isomorphic to E_8(-2). Finally we prove that any couple consisting of one such variety and a symplectic involution on it can be deformed into a couple consisting of the Hilbert square of a K3 surface and the involution induced by a Nikulin involution on the K3 surface.Comment: Final version, to appear on Central European Journal of Mathematic

    One-pot aerosol synthesis of ordered hierarchical mesoporous core-shell silica nanoparticles

    Get PDF
    金沢大学理工研究域物質化学系A mixed surfactant approach has been successfully employed in an aerosol-based synthesis of spherical silica particles exhibiting a new core-shell structure where the shell and the core exhibit different ordered mesoporosity and pore sizes. © 2004 Royal Society of Chemistry

    Midgut microbiota of the malaria mosquito vector Anopheles gambiae and Interactions with plasmodium falciparum Infection

    Get PDF
    The susceptibility of Anopheles mosquitoes to Plasmodium infections relies on complex interactions between the insect vector and the malaria parasite. A number of studies have shown that the mosquito innate immune responses play an important role in controlling the malaria infection and that the strength of parasite clearance is under genetic control, but little is known about the influence of environmental factors on the transmission success. We present here evidence that the composition of the vector gut microbiota is one of the major components that determine the outcome of mosquito infections. A. gambiae mosquitoes collected in natural breeding sites from Cameroon were experimentally challenged with a wild P. falciparum isolate, and their gut bacterial content was submitted for pyrosequencing analysis. The meta-taxogenomic approach revealed a broader richness of the midgut bacterial flora than previously described. Unexpectedly, the majority of bacterial species were found in only a small proportion of mosquitoes, and only 20 genera were shared by 80% of individuals. We show that observed differences in gut bacterial flora of adult mosquitoes is a result of breeding in distinct sites, suggesting that the native aquatic source where larvae were grown determines the composition of the midgut microbiota. Importantly, the abundance of Enterobacteriaceae in the mosquito midgut correlates significantly with the Plasmodium infection status. This striking relationship highlights the role of natural gut environment in parasite transmission. Deciphering microbe-pathogen interactions offers new perspectives to control disease transmission.Institut de Recherche pour le Developpement (IRD); French Agence Nationale pour la Recherche [ANR-11-BSV7-009-01]; European Community [242095, 223601]info:eu-repo/semantics/publishedVersio

    Measurement of the cosmogenic activation of germanium detectors in EDELWEISS-III

    Get PDF
    International audienceWe present a measurement of the cosmogenic activation in the germanium cryogenic detectors of the EDELWEISS III direct dark matter search experiment. The decay rates measured in detectors with different exposures to cosmic rays above ground are converted into production rates of different isotopes. The measured production rates in units of nuclei/kg/day are 82 ±\pm 21 for 3^3H, 2.8 ±\pm 0.6 for 49^{49}V, 4.6 ±\pm 0.7 for 55^{55}Fe, and 106 ±\pm 13 for 65^{65}Zn. These results are the most accurate for these isotopes. A lower limit on the production rate of 68^{68}Ge of 74 nuclei/kg/day is also presented. They are compared to model predictions present in literature and to estimates calculated with the ACTIVIA code

    Signals induced by charge-trapping in EDELWEISS FID detectors: Analytical modeling and applications

    Get PDF
    The EDELWEISS-III direct dark matter search experiment uses cryogenic HP-Ge detectors Fully covered with Inter-Digitized electrodes (FID). They are operated at low fields (< 1 V/cm), and as a consequence charge-carrier trapping significantly affects both the ionization and heat energy measurements. This paper describes an analytical model of the signals induced by trapped charges in FID detectors based on the Shockley-Ramo theorem. It is used to demonstrate that veto electrodes, initially designed for the sole purpose of surface event rejection, can be used to provide a sensitivity to the depth of the energy deposits, characterize the trapping in the crystals, perform heat and ionization energy corrections and improve the ionization baseline resolutions. These procedures are applied successfully to actual data

    Improved EDELWEISS-III sensitivity for low-mass WIMPs using a profile likelihood approach

    Get PDF
    We report on a dark matter search for a Weakly Interacting Massive Particle (WIMP) in the mass range mχ∈[4,30]GeV/c2 with the EDELWEISS-III experiment. A 2D profile likelihood analysis is performed on data from eight selected detectors with the lowest energy thresholds leading to a combined fiducial exposure of 496 kg-days. External backgrounds from γ- and β-radiation, recoils from 206Pb and neutrons as well as detector intrinsic backgrounds were modelled from data outside the region of interest and constrained in the analysis. The basic data selection and most of the background models are the same as those used in a previously published analysis based on boosted decision trees (BDT) [1]. For the likelihood approach applied in the analysis presented here, a larger signal efficiency and a subtraction of the expected background lead to a higher sensitivity, especially for the lowest WIMP masses probed. No statistically significant signal was found and upper limits on the spin-independent WIMP-nucleon scattering cross section can be set with a hypothesis test based on the profile likelihood test statistics. The 90 % C.L. exclusion limit set for WIMPs with mχ=4GeV/c2 is 1.6×10-39cm2, which is an improvement of a factor of seven with respect to the BDT-based analysis. For WIMP masses above 15GeV/c2 the exclusion limits found with both analyses are in good agreement

    The art of cellular communication: tunneling nanotubes bridge the divide

    Get PDF
    The ability of cells to receive, process, and respond to information is essential for a variety of biological processes. This is true for the simplest single cell entity as it is for the highly specialized cells of multicellular organisms. In the latter, most cells do not exist as independent units, but are organized into specialized tissues. Within these functional assemblies, cells communicate with each other in different ways to coordinate physiological processes. Recently, a new type of cell-to-cell communication was discovered, based on de novo formation of membranous nanotubes between cells. These F-actin-rich structures, referred to as tunneling nanotubes (TNT), were shown to mediate membrane continuity between connected cells and facilitate the intercellular transport of various cellular components. The subsequent identification of TNT-like structures in numerous cell types revealed some structural diversity. At the same time it emerged that the direct transfer of cargo between cells is a common functional property, suggesting a general role of TNT-like structures in selective, long-range cell-to-cell communication. Due to the growing number of documented thin and long cell protrusions in tissue implicated in cell-to-cell signaling, it is intriguing to speculate that TNT-like structures also exist in vivo and participate in important physiological processes
    corecore