100 research outputs found

    Noncommutative resolutions of ADE fibered Calabi-Yau threefolds

    Get PDF
    In this paper we construct noncommutative resolutions of a certain class of Calabi-Yau threefolds studied by F. Cachazo, S. Katz and C. Vafa. The threefolds under consideration are fibered over a complex plane with the fibers being deformed Kleinian singularities. The construction is in terms of a noncommutative algebra introduced by V. Ginzburg, which we call the "N=1 ADE quiver algebra"

    The Nakayama automorphism of the almost Calabi-Yau algebras associated to SU(3) modular invariants

    Get PDF
    We determine the Nakayama automorphism of the almost Calabi-Yau algebra A associated to the braided subfactors or nimrep graphs associated to each SU(3) modular invariant. We use this to determine a resolution of A as an A-A bimodule, which will yield a projective resolution of A.Comment: 46 pages which constitutes the published version, plus an Appendix detailing some long calculations. arXiv admin note: text overlap with arXiv:1110.454

    The frailty index outperforms DNA methylation age and its derivatives as an indicator of biological age

    Get PDF
    The measurement of biological age as opposed to chronological age is important to allow the study of factors that are responsible for the heterogeneity in the decline in health and function ability among individuals during aging. Various measures of biological aging have been proposed. Frailty indices based on health deficits in diverse body systems have been well studied, and we have documented the use of a frailty index (FI(34)) composed of 34 health items, for measuring biological age. A different approach is based on leukocyte DNA methylation. It has been termed DNA methylation age, and derivatives of this metric called age acceleration difference and age acceleration residual have also been employed. Any useful measure of biological age must predict survival better than chronological age does. Meta-analyses indicate that age acceleration difference and age acceleration residual are significant predictors of mortality, qualifying them as indicators of biological age. In this article, we compared the measures based on DNA methylation with FI(34). Using a well-studied cohort, we assessed the efficiency of these measures side by side in predicting mortality. In the presence of chronological age as a covariate, FI(34) was a significant predictor of mortality, whereas none of the DNA methylation age-based metrics were. The outperformance of FI(34) over DNA methylation age measures was apparent when FI(34) and each of the DNA methylation age measures were used together as explanatory variables, along with chronological age: FI(34) remained significant but the DNA methylation measures did not. These results indicate that FI(34) is a robust predictor of biological age, while these DNA methylation measures are largely a statistical reflection of the passage of chronological time

    Genome-wide association study of male sexual orientation

    Get PDF
    Family and twin studies suggest that genes play a role in male sexual orientation. We conducted a genome-wide association study (GWAS) of male sexual orientation on a primarily European ancestry sample of 1,077 homosexual men and 1,231 heterosexual men using Affymetrix single nucleotide polymorphism (SNP) arrays. We identified several SNPs with p < 10 -5 , including regions of multiple supporting SNPs on chromosomes 13 (minimum p = 7.5 × 10 -7 ) and 14 (p = 4.7 × 10 -7 ). The genes nearest to these peaks have functions plausibly relevant to the development of sexual orientation. On chromosome 13, SLITRK6 is a neurodevelopmental gene mostly expressed in the diencephalon, which contains a region previously reported as differing in size in men by sexual orientation. On chromosome 14, TSHR genetic variants in intron 1 could conceivably help explain past findings relating familial atypical thyroid function and male homosexuality. Furthermore, skewed X chromosome inactivation has been found in the thyroid condition, Graves' disease, as well as in mothers of homosexual men. On pericentromeric chromosome 8 within our previously reported linkage peak, we found support (p = 4.1 × 10 -3 ) for a SNP association previously reported (rs77013977, p = 7.1 × 10 -8 ), with the combined analysis yielding p = 6.7 × 10 -9 , i.e., a genome-wide significant association

    Brain age predicts mortality

    Get PDF
    Age-associated disease and disability are placing a growing burden on society. However, ageing does not affect people uniformly. Hence, markers of the underlying biological ageing process are needed to help identify people at increased risk of age-associated physical and cognitive impairments and ultimately, death. Here, we present such a biomarker, ‘brain-predicted age’, derived using structural neuroimaging. Brain-predicted age was calculated using machine-learning analysis, trained on neuroimaging data from a large healthy reference sample (N = 2001), then tested in the Lothian Birth Cohort 1936 (N = 669), to determine relationships with age-associated functional measures and mortality. Having a brain-predicted age indicative of an older-appearing brain was associated with: weaker grip strength, poorer lung function, slower walking speed, lower fluid intelligence, higher allostatic load and increased mortality risk. Furthermore, while combining brain-predicted age with grey matter and cerebrospinal fluid volumes (themselves strong predictors) not did improve mortality risk prediction, the combination of brain-predicted age and DNA-methylation-predicted age did. This indicates that neuroimaging and epigenetics measures of ageing can provide complementary data regarding health outcomes. Our study introduces a clinically-relevant neuroimaging ageing biomarker and demonstrates that combining distinct measurements of biological ageing further helps to determine risk of age-related deterioration and death

    De novo assembly of Euphorbia fischeriana root transcriptome identifies prostratin pathway related genes

    Get PDF
    Background Euphorbia fischeriana is an important medicinal plant found in Northeast China. The plant roots contain many medicinal compounds including 12-deoxyphorbol-13-acetate, commonly known as prostratin that is a phorbol ester from the tigliane diterpene series. Prostratin is a protein kinase C activator and is effective in the treatment of Human Immunodeficiency Virus (HIV) by acting as a latent HIV activator. Latent HIV is currently the biggest limitation for viral eradication. The aim of this study was to sequence, assemble and annotate the E. fischeriana transcriptome to better understand the potential biochemical pathways leading to the synthesis of prostratin and other related diterpene compounds. Results In this study we conducted a high throughput RNA-seq approach to sequence the root transcriptome of E. fischeriana. We assembled 18,180 transcripts, of these the majority encoded protein-coding genes and only 17 transcripts corresponded to known RNA genes. Interestingly, we identified 5,956 protein-coding transcripts with high similarity (>=75%) to Ricinus communis, a close relative to E. fischeriana. We also evaluated the conservation of E. fischeriana genes against EST datasets from the Euphorbeacea family, which included R. communis, Hevea brasiliensis and Euphorbia esula. We identified a core set of 1,145 gene clusters conserved in all four species and 1,487 E. fischeriana paralogous genes. Furthermore, we screened E. fischeriana transcripts against an in-house reference database for genes implicated in the biosynthesis of upstream precursors to prostratin. This identified 24 and 9 candidate transcripts involved in the terpenoid and diterpenoid biosyntehsis pathways, respectively. The majority of the candidate genes in these pathways presented relatively low expression levels except for 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase (HDS) and isopentenyl diphosphate/dimethylallyl diphosphate synthase (IDS), which are required for multiple downstream pathways including synthesis of casbene, a proposed precursor to prostratin. Conclusion The resources generated in this study provide new insights into the upstream pathways to the synthesis of prostratin and will likely facilitate functional studies aiming to produce larger quantities of this compound for HIV research and/or treatment of patients

    Offspring Production among the Extended Relatives of Samoan Men and Fa'afafine

    Get PDF
    Androphilia refers to sexual attraction to adult males, whereas gynephilia refers to sexual attraction to adult females. Male androphilia is an evolutionary paradox. Its development is at least partially influenced by genetic factors, yet male androphiles exhibit lower reproductive output, thus raising the question of how genetic factors underlying its development persist. The sexual antagonism hypothesis posits that the fitness costs associated with genetic factors underlying male androphilia are offset because these same factors lead to elevated reproduction on the part of the female relatives of androphilic males. Western samples drawn from low fertility populations have yielded inconsistent results when testing this hypothesis. Some studies documented elevated reproduction among the matrilineal female kin of androphilic males, whereas others found such effects in the paternal line. Samoa is a high-fertility population in which individuals reproduce closer to their maximum capacities. This study compared the reproductive output of the paternal and maternal line grandmothers, aunts, and uncles of 86 Samoan androphilic males, known locally as fa'afafine, and 86 Samoan gynephilic males. Reproductive output was elevated in the paternal and maternal line grandmothers, but not aunts or uncles, of fa'afafine. These findings are consistent with the sexual antagonism hypothesis and suggest that male androphilia is associated with elevated reproduction among extended relatives in both the maternal and paternal line. Discussion focuses on how this study, in conjunction with the broader literature, informs various models for the evolution of male androphilia via elevated reproduction on the part of female kin

    DNA-Methylation Profiling of Fetal Tissues Reveals Marked Epigenetic Differences between Chorionic and Amniotic Samples

    Get PDF
    Epigenetic mechanisms including DNA methylation are supposed to play a key role in fetal development. Here we have investigated fetal DNA-methylation levels of 27,578 CpG loci in 47 chorionic villi (CVS) and 16 amniotic cell (AC) samples. Methylation levels differed significantly between karyotypically normal AC and CVS for 2,014 genes. AC showed more extreme DNA-methylation levels of these genes than CVS and the differentially methylated genes are significantly enriched for processes characteristic for the different cell types sampled. Furthermore, we identified 404 genes differentially methylated in CVS with trisomy 21. These genes were significantly enriched for high CG dinucleotid (CpG) content and developmental processes associated with Down syndrome. Our study points to major tissue-specific differences of fetal DNA-methylation and gives rise to the hypothesis that part of the Down syndrome phenotype is epigenetically programmed in the first trimester of pregnancy

    Longitudinal study of DNA methylation during the first 5 years of life.

    Get PDF
    Background: Early life epigenetic programming influences adult health outcomes. Moreover, DNA methylation levels have been found to change more rapidly during the first years of life. Our aim was the identification and characterization of the CpG sites that are modified with time during the first years of life. We hypothesize that these DNA methylation changes would lead to the detection of genes that might be epigenetically modulated by environmental factors during early childhood and which, if disturbed, might contribute to susceptibility to diseases later in life. Methods: The study of the DNA methylation pattern of 485577 CpG sites was performed on 30 blood samples from 15 subjects, collected both at birth and at 5 years old, using Illumina® Infinium 450 k array. To identify differentially methylated CpG (dmCpG) sites, the methylation status of each probe was examined using linear models and the Empirical Bayes Moderated t test implemented in the limma package of R/Bioconductor. Surogate variable analysis was used to account for batch effects. Results: DNA methylation levels significantly changed from birth to 5 years of age in 6641 CpG sites. Of these, 36.79 % were hypermethylated and were associated with genes related mainly to developmental ontology terms, while 63.21 % were hypomethylated probes and associated with genes related to immune function. Conclusions: Our results suggest that DNA methylation alterations with age during the first years of life might play a significant role in development and the regulation of leukocyte-specific functions. This supports the idea that blood leukocytes experience genome remodeling related to their interaction with environmental factors, underlining the importance of environmental exposures during the first years of life and suggesting that new strategies should be take into consideration for disease prevention

    Effects of prostratin on Cyclin T1/P-TEFb function and the gene expression profile in primary resting CD4(+ )T cells

    Get PDF
    BACKGROUND: The latent reservoir of human immunodeficiency virus type 1 (HIV-1) in resting CD4(+ )T cells is a major obstacle to the clearance of infection by highly active antiretroviral therapy (HAART). Recent studies have focused on searches for adjuvant therapies to activate this reservoir under conditions of HAART. Prostratin, a non tumor-promoting phorbol ester, is a candidate for such a strategy. Prostratin has been shown to reactivate latent HIV-1 and Tat-mediated transactivation may play an important role in this process. We examined resting CD4(+ )T cells from healthy donors to determine if prostratin induces Cyclin T1/P-TEFb, a cellular kinase composed of Cyclin T1 and Cyclin-dependent kinase-9 (CDK9) that mediates Tat function. We also examined effects of prostratin on Cyclin T2a, an alternative regulatory subunit for CDK9, and 7SK snRNA and the HEXIM1 protein, two factors that associate with P-TEFb and repress its kinase activity. RESULTS: Prostratin up-regulated Cyclin T1 protein expression, modestly induced CDK9 protein expression, and did not affect Cyclin T2a protein expression. Although the kinase activity of CDK9 in vitro was up-regulated by prostratin, we observed a large increase in the association of 7SK snRNA and the HEXIM1 protein with CDK9. Using HIV-1 reporter viruses with and without a functional Tat protein, we found that prostratin stimulation of HIV-1 gene expression appears to require a functional Tat protein. Microarray analyses were performed and several genes related to HIV biology, including APOBEC3B, DEFA1, and S100 calcium-binding protein genes, were found to be regulated by prostratin. CONCLUSION: Prostratin induces Cyclin T1 expression and P-TEFb function and this is likely to be involved in prostratin reactivation of latent HIV-1 proviruses. The large increase in association of 7SK and HEXIM1 with P-TEFb following prostratin treatment may reflect a requirement in CD4(+ )T cells for a precise balance between active and catalytically inactive P-TEFb. Additionally, genes regulated by prostratin were identified that have the potential to regulate HIV-1 replication both positively and negatively
    corecore