1,450 research outputs found

    Anisotropic fluxes and nonlocal interactions in MHD turbulence

    Full text link
    We investigate the locality or nonlocality of the energy transfer and of the spectral interactions involved in the cascade for decaying magnetohydrodynamic (MHD) flows in the presence of a uniform magnetic field B\bf B at various intensities. The results are based on a detailed analysis of three-dimensional numerical flows at moderate Reynold numbers. The energy transfer functions, as well as the global and partial fluxes, are examined by means of different geometrical wavenumber shells. On the one hand, the transfer functions of the two conserved Els\"asser energies E+E^+ and E−E^- are found local in both the directions parallel (k∄k_\|-direction) and perpendicular (k⊄k_\perp-direction) to the magnetic guide-field, whatever the B{\bf B}-strength. On the other hand, from the flux analysis, the interactions between the two counterpropagating Els\"asser waves become nonlocal. Indeed, as the B{\bf B}-intensity is increased, local interactions are strongly decreased and the interactions with small k∄k_\| modes dominate the cascade. Most of the energy flux in the k⊄k_\perp-direction is due to modes in the plane at k∄=0k_\|=0, while the weaker cascade in the k∄k_\|-direction is due to the modes with k∄=1k_\|=1. The stronger magnetized flows tends thus to get closer to the weak turbulence limit where the three-wave resonant interactions are dominating. Hence, the transition from the strong to the weak turbulence regime occurs by reducing the number of effective modes in the energy cascade.Comment: Submitted to PR

    On the two-dimensional state in driven magnetohydrodynamic turbulence

    Full text link
    The dynamics of the two-dimensional (2D) state in driven tridimensional (3D) incompressible magnetohydrodynamic turbulence is investigated through high-resolution direct numerical simulations and in the presence of an external magnetic field at various intensities. For such a flow the 2D state (or slow mode) and the 3D modes correspond respectively to spectral fluctuations in the plan k∄=0k_\parallel=0 and in the area k∄>0k_\parallel>0. It is shown that if initially the 2D state is set to zero it becomes non negligible in few turnover times particularly when the external magnetic field is strong. The maintenance of a large scale driving leads to a break for the energy spectra of 3D modes; when the driving is stopped the previous break is removed and a decay phase emerges with alfv\'enic fluctuations. For a strong external magnetic field the energy at large perpendicular scales lies mainly in the 2D state and in all situations a pinning effect is observed at small scales.Comment: 11 pages, 11 figure

    Asteroseismic Theory of Rapidly Oscillating Ap Stars

    Get PDF
    This paper reviews some of the important advances made over the last decade concerning theory of roAp stars.Comment: 9 pages, 5 figure

    Ultrafast Magneto-Acoustics in Nickel Films

    Full text link
    We report about the existence of magneto-acoustic pulses propagating in a 200-nm-thick ferromagnetic nickel film excited with 120 fs laser pulses. They result from the coupling between the magnetization of the ferromagnetic film and the longitudinal acoustic waves associated to the propagation of the lattice deformation induced by the femtosecond laser pulses. The magneto-acoustic pulses are detected from both the front and back sides of the film, using the time-resolved magneto-optical Kerr technique, measuring both the time dependent rotation and ellipticity. We show that the propagating acoustic pulse couples efficiently to the magnetization and is strong enough to induce a precession of the magnetization. It is due to a transient change of the crystalline anisotropy associated to the lattice deformation. It is shown that the results can be interpreted by combining the concepts of acoustic pulse propagation and ultrafast magnetization dynamics.Comment: 4 pages, 3 figures, Submitted to Physical Review Letters on November 30th 201

    Switching dynamics of spatial solitary wave pixels

    Get PDF
    Separatrices and scaling laws in the switching dynamics of spatial solitary wave pixels are investigated. We show that the dynamics in the full model are similar to those in the plane-wave limit. Switching features may be indicated and explained by the motion of the (complex) solitary wave amplitude in the phase plane. We report generalization, into the domain of transverse effects, of the pulse area theorem for the switching process and a logarithmic law for the transient dynamics. We also consider, for what is the first time to our knowledge, phase-encoded address of solitary pixels and find that a near-square-wave temporal switching pattern is permitted without (transverse) cross switching

    A survey of transposable element classification systems--a call for a fundamental update to meet the challenge of their diversity and complexity.

    Get PDF
    The increase of publicly available sequencing data has allowed for rapid progress in our understanding of genome composition. As new information becomes available we should constantly be updating and reanalyzing existing and newly acquired data. In this report we focus on transposable elements (TEs) which make up a significant portion of nearly all sequenced genomes. Our ability to accurately identify and classify these sequences is critical to understanding their impact on host genomes. At the same time, as we demonstrate in this report, problems with existing classification schemes have led to significant misunderstandings of the evolution of both TE sequences and their host genomes. In a pioneering publication Finnegan (1989) proposed classifying all TE sequences into two classes based on transposition mechanisms and structural features: the retrotransposons (class I) and the DNA transposons (class II). We have retraced how ideas regarding TE classification and annotation in both prokaryotic and eukaryotic scientific communities have changed over time. This has led us to observe that: (1) a number of TEs have convergent structural features and/or transposition mechanisms that have led to misleading conclusions regarding their classification, (2) the evolution of TEs is similar to that of viruses by having several unrelated origins, (3) there might be at least 8 classes and 12 orders of TEs including 10 novel orders. In an effort to address these classification issues we propose: (1) the outline of a universal TE classification, (2) a set of methods and classification rules that could be used by all scientific communities involved in the study of TEs, and (3) a 5-year schedule for the establishment of an International Committee for Taxonomy of Transposable Elements (ICTTE)

    Adaptive Covariance Estimation with model selection

    Get PDF
    We provide in this paper a fully adaptive penalized procedure to select a covariance among a collection of models observing i.i.d replications of the process at fixed observation points. For this we generalize previous results of Bigot and al. and propose to use a data driven penalty to obtain an oracle inequality for the estimator. We prove that this method is an extension to the matricial regression model of the work by Baraud

    On the understanding of pulsations in the atmosphere of roAp stars: phase diversity and false nodes

    Full text link
    Studies based on high-resolution spectroscopic data of rapidly oscillating Ap stars show a surprising diversity of pulsation behavior in the atmospheric layers, pointing, in particular, to the co-existence of running and standing waves. The correct interpretation of these data requires a careful modelling of pulsations in these magnetic stars. In light of this, in this work we present a theoretical analysis of pulsations in roAp stars, taking into account the direct influence of the magnetic field. We derive approximate analytical solutions for the displacement components parallel and perpendicular to the direction of the magnetic field, that are appropriate to the outermost layer. From these, we determine the expression for the theoretical radial velocity for an observer at a general position, and compute the corresponding pulsation amplitude and phase as function of height in the atmosphere. We show that the integral for the radial velocity has contributions from three different types of wave solutions, namely, running waves, evanescent waves, and standing waves of nearly constant amplitude. We then consider a number of case studies to illustrate the origin of the different pulsational behaviour that is found in the observations. Concerning pulsation amplitude, we find that it generally increases with atmospheric height. Pulsation phase, however, shows a diversity of behaviours, including phases that are constant, increasing, or decreasing with atmospheric height. Finally, we show that there are situations in which the pulsation amplitude goes through a zero, accompanied by a phase jumps of π\pi, and argue that such behaviour does not correspond to a pulsation node in the outermost layers of the star, but rather to a visual effect, resulting from the observers inability to resolve the stellar surface.Comment: 21 pages, 25 figure
    • 

    corecore