The dynamics of the two-dimensional (2D) state in driven tridimensional (3D)
incompressible magnetohydrodynamic turbulence is investigated through
high-resolution direct numerical simulations and in the presence of an external
magnetic field at various intensities. For such a flow the 2D state (or slow
mode) and the 3D modes correspond respectively to spectral fluctuations in the
plan k∥=0 and in the area k∥>0. It is shown that if
initially the 2D state is set to zero it becomes non negligible in few turnover
times particularly when the external magnetic field is strong. The maintenance
of a large scale driving leads to a break for the energy spectra of 3D modes;
when the driving is stopped the previous break is removed and a decay phase
emerges with alfv\'enic fluctuations. For a strong external magnetic field the
energy at large perpendicular scales lies mainly in the 2D state and in all
situations a pinning effect is observed at small scales.Comment: 11 pages, 11 figure