research

Ultrafast Magneto-Acoustics in Nickel Films

Abstract

We report about the existence of magneto-acoustic pulses propagating in a 200-nm-thick ferromagnetic nickel film excited with 120 fs laser pulses. They result from the coupling between the magnetization of the ferromagnetic film and the longitudinal acoustic waves associated to the propagation of the lattice deformation induced by the femtosecond laser pulses. The magneto-acoustic pulses are detected from both the front and back sides of the film, using the time-resolved magneto-optical Kerr technique, measuring both the time dependent rotation and ellipticity. We show that the propagating acoustic pulse couples efficiently to the magnetization and is strong enough to induce a precession of the magnetization. It is due to a transient change of the crystalline anisotropy associated to the lattice deformation. It is shown that the results can be interpreted by combining the concepts of acoustic pulse propagation and ultrafast magnetization dynamics.Comment: 4 pages, 3 figures, Submitted to Physical Review Letters on November 30th 201

    Similar works

    Full text

    thumbnail-image

    Available Versions