We report about the existence of magneto-acoustic pulses propagating in a
200-nm-thick ferromagnetic nickel film excited with 120 fs laser pulses. They
result from the coupling between the magnetization of the ferromagnetic film
and the longitudinal acoustic waves associated to the propagation of the
lattice deformation induced by the femtosecond laser pulses. The
magneto-acoustic pulses are detected from both the front and back sides of the
film, using the time-resolved magneto-optical Kerr technique, measuring both
the time dependent rotation and ellipticity. We show that the propagating
acoustic pulse couples efficiently to the magnetization and is strong enough to
induce a precession of the magnetization. It is due to a transient change of
the crystalline anisotropy associated to the lattice deformation. It is shown
that the results can be interpreted by combining the concepts of acoustic pulse
propagation and ultrafast magnetization dynamics.Comment: 4 pages, 3 figures, Submitted to Physical Review Letters on November
30th 201