24 research outputs found

    Adaptations of Natural Killer Cells to Self-MHC Class I.

    Get PDF
    Natural Killer (NK) cells use germ line encoded receptors to detect diseased host cells. Despite the invariant recognition structures, NK cells have a significant ability to adapt to their surroundings, such as the presence or absence of MHC class I molecules. It has been assumed that this adaptation occurs during NK cell development, but recent findings show that mature NK cells can also adapt to the presence or absence of MHC class I molecules. Here, we summarize how NK cells adjust to changes in the expression of MHC class I molecules. We propose an extension of existing models, in which MHC class I recognition during NK cell development sequentially instructs and maintains NK cell function. The elucidation of the molecular basis of the two effects may identify ways to improve the fitness of NK cells and to prevent the loss of NK cell function due to persistent alterations in their environment

    Education of Murine NK Cells Requires Both cis and trans Recognition of MHC Class I Molecules.

    Get PDF
    Although NK cells use invariant receptors to identify diseased cells, they nevertheless adapt to their environment, including the presence of certain MHC class I (MHC-I) molecules. This NK cell education, which is mediated by inhibitory receptors specific for MHC-I molecules, changes the responsiveness of activating NK cell receptors (licensing) and modifies the repertoire of MHC-I receptors used by NK cells. The fact that certain MHC-I receptors have the unusual capacity to recognize MHC-I molecules expressed by other cells (trans) and by the NK cell itself (cis) has raised the question regarding possible contributions of the two types of interactions to NK cell education. Although the analysis of an MHC-I receptor variant suggested a role for cis interaction for NK cell licensing, adoptive NK cell transfer experiments supported a key role for trans recognition. To reconcile some of these findings, we have analyzed the impact of cell type-specific deletion of an MHC-I molecule and of a novel MHC-I receptor variant on the education of murine NK cells when these mature under steady-state conditions in vivo. We find that MHC-I expression by NK cells (cis) and by T cells (trans), and MHC-I recognition in cis and in trans, are both needed for NK cell licensing. Unexpectedly, modifications of the MHC-I receptor repertoire are chiefly dependent on cis binding, which provides additional support for an essential role for this unconventional type of interaction for NK cell education. These data suggest that two separate functions of MHC-I receptors are needed to adapt NK cells to self-MHC-I

    NLRC5 shields T lymphocytes from NK-cell-mediated elimination under inflammatory conditions.

    Get PDF
    NLRC5 is a transcriptional regulator of MHC class I (MHCI), which maintains high MHCI expression particularly in T cells. Recent evidence highlights an important NK-T-cell crosstalk, raising the question on whether NLRC5 specifically modulates this interaction. Here we show that NK cells from Nlrc5-deficient mice exhibit moderate alterations in inhibitory receptor expression and responsiveness. Interestingly, NLRC5 expression in T cells is required to protect them from NK-cell-mediated elimination upon inflammation. Using T-cell-specific Nlrc5-deficient mice, we show that NK cells surprisingly break tolerance even towards 'self' Nlrc5-deficient T cells under inflammatory conditions. Furthermore, during chronic LCMV infection, the total CD8(+) T-cell population is severely decreased in these mice, a phenotype reverted by NK-cell depletion. These findings strongly suggest that endogenous T cells with low MHCI expression become NK-cell targets, having thus important implications for T-cell responses in naturally or therapeutically induced inflammatory conditions

    The function of natural killer cells: education, reminders and some good memories.

    No full text
    The effector response of natural killer (NK) cells is determined by opposing signals received through activating and inhibitory receptors. A process termed NK cell education, which is guided by the recognition of Major Histocompatibility Complex class I (MHC-I) molecules, determines how efficiently activating receptors respond to stimulation. This ensures NK cell tolerance to healthy tissues while allowing robust responses to diseased host cells. It was thought that NK cells are educated during their development in the bone marrow and that education fixes the NK cells' functional properties. However, recent findings suggest that the function of mature peripheral NK cells can adapt to changes in their environment and that the persistent exposure to normal-self is essential to maintain NK cell reactivity. Notwithstanding, NK cell stimulation in the context of inflammation can stably improve the functional properties of NK cells

    IL-2 triggers specific signaling pathways in human NKT cells leading to the production of pro- and anti-inflammatory cytokines.

    No full text
    International audienceNKT cells belong to a conserved T lymphocyte subgroup that has been implicated in the regulation of various immune responses, including responses to viruses, bacteria, and parasites. They express a semi-invariant TCR that recognizes glycolipids presented by the nonpolymorphic MHC class I-like molecule CD1d, and upon activation, they produce various pro- and anti-inflammatory cytokines. Recent studies have shed light on the nature of glycolipids and the environmental signals that may influence the production of cytokines by NKT cells and thus, modulate the immune response. To better understand the regulation mechanisms of NKT cells, we explored their behavior following activation by IL-2 and investigated the signaling pathways and biological responses triggered. We demonstrated that IL-2 activates not only STAT3 and -5 and the PI-3K and ERK-2 pathways as in all IL-2 responder cells but also STAT4 as in NK cells and the p38 MAPK pathway as in alphabeta T cells. We also showed that STAT6 is activated by IL-2 in NKT cells. Moreover, IL-2 induces the production of IFN-gamma and IL-4. The ability of IL-2 to induce pro- and anti-inflammatory cytokine production, in addition to proliferation, could open new therapeutic approaches for use in combination with molecules that activate NKT cells through TCR activation
    corecore