275 research outputs found

    X-ray white beam topography of self-organized domains in flux-grown BaTiO3 single crystals

    Get PDF
    The phenomenon of self-organization of domains into a “square-net pattern” in single-crystal, flux-grown BaTiO3 several degrees below the ferroelectric to paraelectric phase transition was investigated using in situ synchrotron x-ray topography. The tetragonal distortion of the crystal was determined by measuring the angular separation between the diffraction images received from 90° a and c domains in the projection topographs, and shows a rapid decrease towards 110 °C, the onset temperature for self-organization. The onset of self-organization is accompanied by bending of the {100} lattice planes parallel to the crystal surface, which produces a strain that persists up to and beyond the Curie temperature, where the crystal becomes cubic and the self-organized domains disappear. At the Curie point, the bending angle α100=8.1(±0.3)mrad is at a maximum and corresponds to the radius of curvature of the surface being 16.3(±0.6) mm

    Structural defects in Hg1−xCdxI2 layers grown on CdTe substrates by vapor phase epitaxy

    Get PDF
    Hg1−xCdxI2 20–25-ÎŒm-thick layers with a uniform composition in the range of x = 0.1–0.2 were grown on CdTe substrates by vapor phase epitaxy (VPE). The growth was carried out using an α-HgI2 polycrystalline source at 200 °C and in the time range of 30–100 h. The layers were studied by scanning electron microscopy (SEM) and high resolution synchrotron x-ray topography (SXRT). The SEM and SXRT images of Hg1−xCdxI2 VPE layers allow one to identify the defects affecting the layer structure. The two main types of structural defects in the layers are subgrain boundaries and densely spaced striations similar to those referred generally to as vapor grown HgI2 bulk crystals. The effect of the growth time on these defects has been analyzed and on the basis of this it has been possible to grow Hg1−xCdxI2 layers with low defect [email protected]

    In vitro synchrotron-based radiography of micro-gap formation at the implant–abutment interface of two-piece dental implants

    Get PDF
    Micro-radiography using hard X-ray synchrotron radiation is the first potential tool to allow an evaluation of the mechanical behavior of the dental implant–abutment complex during force application, thus enabling the enhancement of the design of dental implants which has been based on theoretical analysis to date

    An assessment of the resolution limitation due to radiation-damage in x-ray diffraction microscopy

    Full text link
    X-ray diffraction microscopy (XDM) is a new form of x-ray imaging that is being practiced at several third-generation synchrotron-radiation x-ray facilities. Although only five years have elapsed since the technique was first introduced, it has made rapid progress in demonstrating high-resolution threedimensional imaging and promises few-nm resolution with much larger samples than can be imaged in the transmission electron microscope. Both life- and materials-science applications of XDM are intended, and it is expected that the principal limitation to resolution will be radiation damage for life science and the coherent power of available x-ray sources for material science. In this paper we address the question of the role of radiation damage. We use a statistical analysis based on the so-called "dose fractionation theorem" of Hegerl and Hoppe to calculate the dose needed to make an image of a lifescience sample by XDM with a given resolution. We conclude that the needed dose scales with the inverse fourth power of the resolution and present experimental evidence to support this finding. To determine the maximum tolerable dose we have assembled a number of data taken from the literature plus some measurements of our own which cover ranges of resolution that are not well covered by reports in the literature. The tentative conclusion of this study is that XDM should be able to image frozen-hydrated protein samples at a resolution of about 10 nm with "Rose-criterion" image quality.Comment: 9 pages, 4 figure

    Magnetic structures and reorientation transitions in noncentrosymmetric uniaxial antiferromagnets

    Full text link
    A phenomenological theory of magnetic states in noncentrosymmetric tetragonal antiferromagnets is developed, which has to include homogeneous and inhomogeneous terms (Lifshitz-invariants) derived from Dzyaloshinskii-Moriya couplings. Magnetic properties of this class of antiferromagnets with low crystal symmetry are discussed in relation to its first known members, the recently detected compounds Ba2CuGe2O7 and K2V3O8. Crystallographic symmetry and magnetic ordering in these systems allow the simultaneous occurrence of chiral inhomogeneous magnetic structures and weak ferromagnetism. New types of incommensurate magnetic structures are possible, namely, chiral helices with rotation of staggered magnetization and oscillations of the total magnetization. Field-induced reorientation transitions into modulated states have been studied and corresponding phase diagrams are constructed. Structures of magnetic defects (domain-walls and vortices) are discussed. In particular, vortices, i.e. localized non-singular line defects, are stabilized by the inhomogeneous Dzyaloshinskii-Moriya interactions in uniaxial noncentrosymmetric antiferromagnets.Comment: 18 pages RevTeX4, 13 figure

    Interleukin-18 produced by bone marrow- derived stromal cells supports T-cell acute leukaemia progression

    Get PDF
    International audienceDevelopment of novel therapies is critical for T-cell acute leukae-mia (T-ALL). Here, we investigated the effect of inhibiting the MAPK/MEK/ERK pathway on T-ALL cell growth. Unexpectedly, MEK inhibitors (MEKi) enhanced growth of 70% of human T-ALL cell samples cultured on stromal cells independently of NOTCH activa-tion and maintained their ability to propagate in vivo. Similar results were obtained when T-ALL cells were cultured with ERK1/ 2-knockdown stromal cells or with conditioned medium from MEKi-treated stromal cells. Microarray analysis identified interleu-kin 18 (IL-18) as transcriptionally up-regulated in MEKi-treated MS5 cells. Recombinant IL-18 promoted T-ALL growth in vitro, whereas the loss of function of IL-18 receptor in T-ALL blast cells decreased blast proliferation in vitro and in NSG mice. The NFKB pathway that is downstream to IL-18R was activated by IL-18 in blast cells. IL-18 circulating levels were increased in T-ALL-xeno-grafted mice and also in T-ALL patients in comparison with controls. This study uncovers a novel role of the pro-inflammatory cytokine IL-18 and outlines the microenvironment involvement in human T-ALL development
    • 

    corecore