64 research outputs found

    Recommended motor assessments based on psychometric properties in individuals with dementia: A systematic review

    Get PDF
    Abstract Background Motor assessments are important to determine effectiveness of physical activity in individuals with dementia (IWD). However, inappropriate and non-standardised assessments without sound psychometric properties have been used. This systematic review aims to examine psychometric properties of motor assessments in IWD combined with frequency of use and effect sizes and to provide recommendations based on observed findings. We performed a two-stage systematic literature search using Pubmed, Web of Science, Cochrane Library, ALOIS, and Scopus (inception - July/September 2018, English and German). The first search purposed to identify motor assessments used in randomised controlled trials assessing effectiveness of physical activity in IWD and to display their frequency of use and effect sizes. The second search focused on psychometric properties considering influence of severity and aetiology of dementia and cueing on test-retest reliability. Two reviewers independently extracted and analysed findings of eligible studies in a narrative synthesis. Results Literature searches identified 46 randomised controlled trials and 21 psychometric property studies. While insufficient information was available for validity, we observed sufficient inter-rater and relative test-retest reliability but unacceptable absolute test-retest reliability for most assessments. Combining these findings with frequency of use and effect sizes, we recommend Functional Reach Test, Groningen Meander Walking Test (time), Berg Balance Scale, Performance Oriented Mobility Assessment, Timed Up & Go Test, instrumented gait analysis (spatiotemporal parameters), Sit-to-Stand assessments (repetitions> 1), and 6-min walk test. It is important to consider that severity and aetiology of dementia and cueing influenced test-retest reliability of some assessments. Conclusion This review establishes an important foundation for future investigations. Sufficient relative reliability supports the conclusiveness of recommended assessments at group level, while unacceptable absolute reliability advices caution in assessing intra-individual changes. Moreover, influences on test-retest reliability suggest tailoring assessments and instructions to IWD and applying cueing only where it is inevitable. Considering heterogeneity of included studies and insufficient examination in various areas, these recommendations are not comprehensive. Further research, especially on validity and influences on test-retest reliability, as well as standardisation and development of tailored assessments for IWD is crucial. This systematic review was registered in PROSPERO (CRD42018105399)

    Nernst branes from special geometry

    Get PDF
    We construct new black brane solutions in U(1)U(1) gauged N=2{\cal N}=2 supergravity with a general cubic prepotential, which have entropy density sT1/3s\sim T^{1/3} as T0T \rightarrow 0 and thus satisfy the Nernst Law. By using the real formulation of special geometry, we are able to obtain analytical solutions in closed form as functions of two parameters, the temperature TT and the chemical potential μ\mu. Our solutions interpolate between hyperscaling violating Lifshitz geometries with (z,θ)=(0,2)(z,\theta)=(0,2) at the horizon and (z,θ)=(1,1)(z,\theta)=(1,-1) at infinity. In the zero temperature limit, where the entropy density goes to zero, we recover the extremal Nernst branes of Barisch et al, and the parameters of the near horizon geometry change to (z,θ)=(3,1)(z,\theta)=(3,1).Comment: 37 pages. v2: numerical pre-factors of scalar fields q_A corrected in Section 3. No changes to conclusions. References adde

    Nernst branes in gauged supergravity

    Full text link
    We study static black brane solutions in the context of N = 2 U(1) gauged supergravity in four dimensions. Using the formalism of first-order flow equations, we construct novel extremal black brane solutions including examples of Nernst branes, i.e. extremal black brane solutions with vanishing entropy density. We also discuss a class of non-extremal generalizations which is captured by the first-order formalism.Comment: 44 pages, 3 figures, v2: added appendix B and references, minor typographic changes, v3: added some clarifying remarks, version published in JHE

    Physical Activity and Trajectory of Cognitive Change in Older Persons: Mayo Clinic Study of Aging

    Get PDF
    Background: Little is known about the association between physical activity (PA) and cognitive trajectories in older adults. Objective: To examine the association between PA and change in memory, language, attention, visuospatial skills, and global cognition, and a potential impact of sex or Apolipoprotein E (APOE) epsilon 4 status. Methods: Longitudinal study derived from the population-based Mayo Clinic Study of Aging, including 2,060 cognitively unimpaired males and females aged >= 70 years. Engagement in midlife (ages 50-65) and late-life (last year) PA was assessed using a questionnaire. Neuropsychological testing was done every 15 months (mean follow-up 5.8 years). We ran linear mixed-effect models to examine whether mid- or late-life PA at three intensities (mild, moderate, vigorous) was associated with cognitive z-scores. Results: Light intensity midlife PA was associated with less decline in memory function compared to the no-PA reference group (time x light PA; estimate [standard error] 0.047 [0.016], p = 0.004). Vigorous late-life PA was associated with less decline in language (0.033 [0.015], p = 0.030), attention (0.032 [0.017], p = 0.050), and global cognition (0.039 [0.016], p = 0.012). Females who were physically inactive in midlife experienced more pronounced cognitive decline than females physically active in midlife and males regardless of PA (p-values for time interaction terms with midlife PA levels and sex were all p < 0.05 for global cognition). APOE epsilon 4 carriership did not moderate the association between PA and cognition. Conclusion: Engaging in PA, particularly of vigorous intensity in late-life, was associated with less pronounced decline in global and domain-specific cognition. This association may differ by sex

    In vivo biomolecular imaging of zebrafish embryos using confocal Raman spectroscopy

    Get PDF
    Zebrafish embryos provide a unique opportunity to visualize complex biological processes, yet conventional imaging modalities are unable to access intricate biomolecular information without compromising the integrity of the embryos. Here, we report the use of confocal Raman spectroscopic imaging for the visualization and multivariate analysis of biomolecular information extracted from unlabeled zebrafish embryos. We outline broad applications of this method in: (i) visualizing the biomolecular distribution of whole embryos in three dimensions, (ii) resolving anatomical features at subcellular spatial resolution, (iii) biomolecular profiling and discrimination of wild type and ΔRD1 mutant Mycobacterium marinum strains in a zebrafish embryo model of tuberculosis and (iv) in vivo temporal monitoring of the wound response in living zebrafish embryos. Overall, this study demonstrates the application of confocal Raman spectroscopic imaging for the comparative bimolecular analysis of fully intact and living zebrafish embryos

    On the IR completion of geometries with hyperscaling violation

    Get PDF
    We study solutions to Einstein-Maxwell-dilaton gravity with a constant magnetic flux which describe, in the holographic AdS/CFT framework, field theories characterized by a dynamical critical exponent and a hyperscaling violation exponent. Such solutions are known to be IR-incomplete due to the presence of a running dilaton, which drives the theory towards strong coupling in the IR, where quantum corrections become important. After introducing generic corrections, in this note we examine the conditions for the emergence of an AdS_2 x R^2 region close to the horizon, which provides an IR-completion for the hyperscaling violating solutions. In the presence of these corrections, we construct explicit numerical solutions where the geometry flows from AdS_4 in the UV to AdS_2 x R^2 in the deep IR, with an intermediate region which exhbits both hyperscaling violation and Lifshitz scaling.We also provide constraints on the structure of Einstein-Maxwell-dilaton theories that admit such solutions, as well as an emergent AdS_2 x R^2 region in the infrared.Comment: Typos fixed, references added, improved discussio

    Mycobacterium marinum antagonistically induces an autophagic response while repressing the autophagic flux in a TORC1- and ESX-1-dependent manner.

    Get PDF
    Autophagy is a eukaryotic catabolic process also participating in cell-autonomous defence. Infected host cells generate double-membrane autophagosomes that mature in autolysosomes to engulf, kill and digest cytoplasmic pathogens. However, several bacteria subvert autophagy and benefit from its machinery and functions. Monitoring infection stages by genetics, pharmacology and microscopy, we demonstrate that the ESX-1 secretion system of Mycobacterium marinum, a close relative to M. tuberculosis, upregulates the transcription of autophagy genes, and stimulates autophagosome formation and recruitment to the mycobacteria-containing vacuole (MCV) in the host model organism Dictyostelium. Antagonistically, ESX-1 is also essential to block the autophagic flux and deplete the MCV of proteolytic activity. Activators of the TORC1 complex localize to the MCV in an ESX-1-dependent manner, suggesting an important role in the manipulation of autophagy by mycobacteria. Our findings suggest that the infection by M. marinum activates an autophagic response that is simultaneously repressed and exploited by the bacterium to support its survival inside the MCV
    corecore