180 research outputs found

    Search for new resonant states in 10C and 11C and their impact on the cosmological lithium problem

    Full text link
    The observed primordial 7Li abundance in metal-poor halo stars is found to be lower than its Big-Bang nucleosynthesis (BBN) calculated value by a factor of approximately three. Some recent works suggested the possibility that this discrepancy originates from missing resonant reactions which would destroy the 7Be, parent of 7Li. The most promising candidate resonances which were found include a possibly missed 1- or 2- narrow state around 15 MeV in the compound nucleus 10C formed by 7Be+3He and a state close to 7.8 MeV in the compound nucleus 11C formed by 7Be+4He. In this work, we studied the high excitation energy region of 10C and the low excitation energy region in 11C via the reactions 10B(3He,t)10C and 11B(3He,t)11C, respectively, at the incident energy of 35 MeV. Our results for 10C do not support 7Be+3He as a possible solution for the 7Li problem. Concerning 11C results, the data show no new resonances in the excitation energy region of interest and this excludes 7Be+4He reaction channel as an explanation for the 7Li deficit.Comment: Accepted for publication in Phys. Rev. C (Rapid Communication

    An implantation Diamond detector as a beam monitor for an intense radioactive ion beam

    Get PDF
    We present the characterization of a Diamond detector and its response as a beam rate monitor with full stopping of radioactive ion beams of high intensity. The detector has been implemented in the VAMOS focal plane at GANIL and utilised in conjunction with AGATA and MUGAST detector systems. In the present experiment, for the first time, the beam has been fully stopped, rather than being recorded by a transmission detector. The Diamond detector has been tested for use as a particle counter for monitoring a high intensity, radioactive ion beam in the study of the alpha transfer reaction 7Li(15O,t)19Ne. The present experiment, which took place in July 2019, has used a 15O radioactive beam with a high intensity of 107 particles per second due to the weak reaction population and it has been measured using the VAMOS spectrometer and the AGATA and MUGAST arrays. Detailed monitoring of beam intensities in the range of 106 – 107 particles per second is particularly challenging in radioactive ion beam experiments. Thus, the chosen method involves the diamond detector due to its sub-nanosecond response time as well as its radiation hardness. The study of the alpha transfer reaction 7Li(15O,t)19Ne will be performed to determine the radiative alpha capture rate on 15O which is a key breakout route from the Hot-CNO cycle which leads to a explosive nucleosynthesis in X-ray bursts

    Production of neutron-rich fragments with neutron number N > Nprojectile in the reaction 48^{48}Ca (60 MeV/nucleon) + Ta

    Get PDF
    Expérience GANIL, Spectrometre LISEInternational audienceThe goal of the present paper is to attempt to clarify the nuclear reaction mechanism leading to the production of fragments at zero degree with neutron number larger than that in the 48Ca projectile, at about 60 MeV per nucleon. The production cross sections of the extremely neutron-rich Si and P isotopes were measured. Concerning the nuclear reaction mechanism leading to the production of these isotopes, one should probably refer to a particular type of transfer mechanism, which results in low excitation energy for the fragments, rather than to the ‘genuine' fragmentation mechanism. An upper limit of about 0.05 pb was estimated for the production cross section for the 47P isotope for which no count was observed

    Breakdown of the Z = 8 Shell Closure in Unbound 12^{12}O and its Mirror Symmetry

    Get PDF
    Expérience GANIL, SISSI, MUST2/E537International audienceAn excited state in the proton-rich unbound nucleus 12O was identified at 1.8(4) MeV via missing-mass spectroscopy with the 14Oðp; tÞ reaction at 51 AMeV. The spin-parity of the state was determined to be 0þ or 2þ by comparing the measured differential cross sections with distorted-wave calculations. The lowered location of the excited state in 12O indicates the breakdown of the major shell closure at Z ¼ 8 near the proton drip line. This demonstrates the persistence of mirror symmetry in the disappearance of the magic number 8 between 12O and its mirror partner 12Be

    Search for resonant states in 10C and 11C and their impact on the primordial 7Li abundance

    Get PDF
    The cosmological 7Li problem arises from the significant discrepancy of about a factor 3 between the predicted primordial 7Li abundance and the observed one. The main process for the production of 7Li during Big-Bang nucleosynthesis is the decay of 7Be. Many key nuclear reactions involved in the production and destruction of 7Be were investigated in attempt to explain the 7Li deficit but none of them led to successful conclusions. However, some authors suggested recently the possibility that the destruction of 7Be by 3He and 4He may reconcile the predictions and observations if missing resonant states in the compound nuclei 10C and 11C exist. Hence, a search of these missing resonant states in 10C and 11C was investigated at the Orsay Tandem-Alto facility through 10B(3He,t)10C and 11B(3He,t)11C charge-exchange reactions respectively. After a short overview of the cosmological 7Li problem from a nuclear physics point of view, a description of the Orsay experiment will be given as well as the obtained results and their impact on the 7Li problem

    Study of the 26Al(n,p)26Mg and 26Al(n,α)23Na reactions using the 27Al(p,p')27Al inelastic scattering reaction

    Get PDF
    26Al was the first cosmic radioactivity ever detected in the galaxy as well as one of the first extinct radioactivity observed in refractory phases of meteorites. Its nucleosynthesis in massive stars is still uncertain mainly due to the lack of nuclear information concerning the 26Al(n,p)26Mg and 26 Al(n,α)23Na reactions. We report on a single and coincidence measurement of the 27Al(p,p')27Al(p)26Mg and 27Al(p,p')27Al(α)23Na reactions performed at the Orsay TANDEM facility aiming at the spectroscopy study of 27Al above the neutron threshold. Fourteen states are observed for the first time within 350 keV above the 26Al+n threshold

    An integrated Bayesian analysis of LOH and copy number data

    Get PDF
    Background: Cancer and other disorders are due to genomic lesions. SNP-microarrays are able to measure simultaneously both genotype and copy number (CN) at several Single Nucleotide Polymorphisms (SNPs) along the genome. CN is defined as the number of DNA copies, and the normal is two, since we have two copies of each chromosome. The genotype of a SNP is the status given by the nucleotides (alleles) which are present on the two copies of DNA. It is defined homozygous or heterozygous if the two alleles are the same or if they differ, respectively. Loss of heterozygosity (LOH) is the loss of the heterozygous status due to genomic events. Combining CN and LOH data, it is possible to better identify different types of genomic aberrations. For example, a long sequence of homozygous SNPs might be caused by either the physical loss of one copy or a uniparental disomy event (UPD), i.e. each SNP has two identical nucleotides both derived from only one parent. In this situation, the knowledge of the CN can help in distinguishing between these two events. Results: To better identify genomic aberrations, we propose a method (called gBPCR) which infers the type of aberration occurred, taking into account all the possible influence in the microarray detection of the homozygosity status of the SNPs, resulting from an altered CN level. Namely, we model the distributions of the detected genotype, given a specific genomic alteration and we estimate the parameters involved on public referenc

    Neoliberalism and University Education in Sub-Saharan Africa

    Get PDF
    This article reviews the history of university development in Sub-Saharan Africa (SSA) and discusses the impact of neoliberal policies. This will be followed by an examination of the problems facing universities in the region. The following questions will be explored: (a) Are the existing universities in SSA serving the development needs of the region? (b) Are these universities up to the task of moving SSA out of the predicaments it faces such as famine, HIV/AIDS, poverty, diseases, debt, and human rights abuses? Finally, the article argues that for universities to play a role in the development of the region, a new paradigm that makes university education a public good should be established
    corecore