231 research outputs found

    DTPA-Functionalized silica-based monoliths for the removal of transition and lanthanide ions from aqueous phase

    Get PDF
    Transition and rare-earth metals are essential raw materials used in a wide range of technological applications; moreover, their consumption is often associated with high production of wastes­. Therefore, their recycling and recovery from end-of-life products or metal-contaminated aqueous environments is of considerable importance from a circular economy perspective. In our study, synthetic mesoporous silica monoliths, obtained by sol-gel synthesis[1] and functionalized with chelating groups are used for the recovery of metal ions from aqueous matrices (MONO-DTPA). The monoliths were characterized using a multi-technique approach and were tested in the recovery of paramagnetic Gd3+, Cu2+ and Co2+ ions from aqueous solutions, using 1H-NMR relaxometry to evaluate their uptake performance in real time and in simple conditions[2]. Detailed information on the kinetics of the capture process was also extrapolated. Finally, the possibility to regenerate the solid sorbents was evaluated. The modified silica monoliths were able to recover an appreciable amount of both di- and trivalent metal ions. The best results were obtained in the case of Cu2+ after 24 hours of contact, with a recovered amount of 0.29 mmol/g corresponding to 18.48 mg/g (Fig. 1, A). The capture performance of MONO-DTPA has been shown to be superior to that of natural or synthetic materials commonly used for metal ion removal (Fig 1, B). [1] V. Miglio, C. Zaccone, C. Vittoni, I. Braschi, E. Buscaroli, G. Golemme, L. Marchese and C. Bisio, Molecules 2021, 26, 1316 [2] S. Marchesi, S. Nascimbene, M. Guidotti, C. Bisio and F. Carniato, Dalton Trans. 2022, 51, 4502–4509

    ¿Es la Argentina el país donde se cumple el trilema monetario?

    Get PDF
    Abstract The monetary trilemma states that it is impossible for a monetary authority to simultaneously have a fixed foreign exchange rate within a context of capital mobility and an independent monetary policy which targets internal objectives. The purpose of this paper is to validate said theory through a model which considers the capital and financial account as a function of the of currency exchange rate, the domestic and international interest rate and the inflation rate. The results show that even if the three objectives are desirable, it is impossible to to meet them simultaneously, in addittion to stating how the Central Bank can overcome this trilemma

    Mercury emission and speciation of coal-fired power plants in China

    Get PDF
    Comprehensive field measurements are needed to understand the mercury emissions from Chinese power plants and to improve the accuracy of emission inventories. Characterization of mercury emissions and their behavior were measured in six typical coal-fired power plants in China. During the tests, the flue gas was sampled simultaneously at inlet and outlet of Selective Catalytic Reduction (SCR), electrostatic precipitators (ESP), and flue gas desulfurization (FGD) using the Ontario Hydro Method (OHM). The pulverized coal, bottom ash, fly ash and gypsum were also sampled in the field. Mercury concentrations in coal burned in the measured power plants ranged from 17 to 385 μg/kg. The mercury mass balances for the six power plants varied from 87 to 116% of the input coal mercury for the whole system. The total mercury concentrations in the flue gas from boilers were at the range of 1.92–27.15 μg/m<sup>3</sup>, which were significantly related to the mercury contents in burned coal. The mercury speciation in flue gas right after the boiler is influenced by the contents of halogen, mercury, and ash in the burned coal. The average mercury removal efficiencies of ESP, ESP plus wet FGD, and ESP plus dry FGD-FF systems were 24%, 73% and 66%, respectively, which were similar to the average removal efficiencies of pollution control device systems in other countries such as US, Japan and South Korea. The SCR system oxidized 16% elemental mercury and reduced about 32% of total mercury. Elemental mercury, accounting for 66–94% of total mercury, was the dominant species emitted to the atmosphere. The mercury emission factor was also calculated for each power plant

    Blood dynamics of mercury and selenium in northern elephant seals during the lactation period

    Full text link
    The effects of reproduction and maternal investment (i.e., milk transfer) on trace element levels remain poorly understood in marine mammals. We examined the blood dynamics of mercury (Hg) and selenium (Se) during lactation in the northern elephant seal (Mirounga angustirostris), a top predator from the North Pacific Ocean. Total Hg and Se levels were measured in whole blood and milk of 10 mother-pup pairs on days 5 and 22 of lactation. Both Hg and Se were transferred to offspring through the milk. Results suggested that the maternal transfer of Se was prominent during lactation, whereas the Hg transfer was larger during gestation. The lactation period affected Hg and Se levels in the blood of elephant seal mothers and pups. Physiological processes and their relationship to body condition should be considered carefully when interpreting trace element levels in the framework of biomonitoring.Peer reviewe

    The Italian arm of the PREPARE study: an international project to evaluate and license a maternal vaccine against group B streptococcus.

    Get PDF
    BACKGROUND: Group B streptococcus (GBS) is a leading cause of sepsis, pneumonia and meningitis in infants, with long term neurodevelopmental sequelae. GBS may be associated with poor pregnancy outcomes, including spontaneous abortion, stillbirth and preterm birth. Intrapartum antibiotic prophylaxis (IAP) is currently the only way to prevent early-onset disease (presenting at 0 to 6 days of life), although it has no impact on the disease presenting over 6 days of life and its implementation is challenging in resource poor countries. A maternal vaccine against GBS could reduce all GBS manifestations as well as improve pregnancy outcomes, even in low-income countries. MAIN BODY: The term "PREPARE" designates an international project aimed at developing a maternal vaccination platform to test vaccines against neonatal GBS infections by maternal immunization. It is a non-profit, multi-center, interventional and experimental study (promoted by the St George University of London. [UK]) with the aim of developing a maternal vaccination platform, determining pregnancy outcomes, and defining the extent of GBS infections in children and mothers in Africa. PREPARE also aims to estimate the protective serocorrelates against the main GBS serotypes that cause diseases in Europe and Africa and to conduct two trials on candidate GBS vaccines. PREPARE consists of 6 work packages. In four European countries (Italy, UK, Netherlands, France) the recruitment of cases and controls will start in 2020 and will end in 2022. The Italian PREPARE network includes 41 centers. The Italian network aims to collect: GBS isolates from infants with invasive disease, maternal and neonatal sera (cases); cord sera and GBS strains from colonized mothers whose infants do not develop GBS infection (controls). SHORT CONCLUSION: PREPARE will contribute information on protective serocorrelates against the main GBS serotypes that cause diseases in Europe and Africa. The vaccine that will be tested by the PREPARE study could be an effective strategy to prevent GBS disease
    • …
    corecore