519 research outputs found

    Repatriation Taxes, Internal Agency Conflicts, and Subsidiary-level Investment Efficiency

    Get PDF
    Using a global sample of multinational corporations (MNCs) and their foreign subsidiaries, we find that repatriation taxes impair subsidiary-level investment efficiency. Consistent with internal agency conflicts between the central management of the MNC and the manager of the foreign subsidiary being the driver, we find that this effect is prevalent in subsidiaries with high information asymmetry, in subsidiaries that are weakly monitored, and subsidiaries of cash-rich MNCs. Natural experiments in the UK and Japan establish a causal relationship for our findings and suggest that a repeal of repatriation taxes increases subsidiary-level investment efficiency while reducing the level of investment. Our paper provides timely empirical evidence to inform expectations for the effects of a recent change to the U.S. international tax law which eliminated repatriation taxes from most of the future foreign earnings of U.S. MNCs.Series: WU International Taxation Research Paper Serie

    Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders

    Get PDF
    Online Mendelian Inheritance in Man (OMIM™) is a comprehensive, authoritative and timely knowledgebase of human genes and genetic disorders compiled to support human genetics research and education and the practice of clinical genetics. Started by Dr Victor A. McKusick as the definitive reference Mendelian Inheritance in Man, OMIM (http://www.ncbi.nlm.nih.gov/omim/) is now distributed electronically by the National Center for Biotechnology Information, where it is integrated with the Entrez suite of databases. Derived from the biomedical literature, OMIM is written and edited at Johns Hopkins University with input from scientists and physicians around the world. Each OMIM entry has a full-text summary of a genetically determined phenotype and/or gene and has numerous links to other genetic databases such as DNA and protein sequence, PubMed references, general and locus-specific mutation databases, HUGO nomenclature, MapViewer, GeneTests, patient support groups and many others. OMIM is an easy and straightforward portal to the burgeoning information in human genetics

    Patient Safety and the COVID-19 Pandemic in Germany: A Repeated Population-Based Cross-Sectional Survey.

    Get PDF
    The coronavirus (COVID-19) has presented Germany with major challenges and has led to concerns about patient safety. We conducted an observational, population-based, nationwide, repeated cross-sectional survey on patient safety in Germany in 2019, 2020, and 2021. Each of the three samples consisted of 1000 randomly recruited adults. Self-reported data via computer-assisted telephone interviews were taken from TK Monitor of Patient Safety. Perceptions, experience, and knowledge relating to patient safety were assessed. The majority of respondents considered medical treatment to involve risks to patient safety. This proportion decreased during the pandemic. The majority also had a high degree of self-efficacy regarding the prevention of medical errors, whereby the percentage that felt well informed with regard to patient safety rose throughout the pandemic. The proportion of persons that suspected they had in the past experienced an error in their treatment remained steady at one third as well as the reported errors. In 2020, 65% of respondents thought health communication with service providers (e.g., extent and comprehensibility of information) remained unchanged during the pandemic, while 35% reported that medical appointments had been cancelled or postponed. This study is the first to assess patient safety from a general population perspective during the coronavirus pandemic in Germany. COVID-19 had a positive impact on perceived patient safety but no impact on suspected and reported errors. Self-efficacy with regard to medical error prevention steadily increased in the general population, and people considered themselves well informed

    ost in promiscuity? An evolutionary and biochemical evaluation of HSD10 function in cardiolipin metabolism

    Get PDF
    Multifunctional proteins are challenging as it can be difficult to confirm pathomechanisms associated with disease-causing genetic variants. The human 17β-hydroxysteroid dehydrogenase 10 (HSD10) is a moonlighting enzyme with at least two structurally and catalytically unrelated functions. HSD10 disease was originally described as a disorder of isoleucine metabolism, but the clinical manifestations were subsequently shown to be linked to impaired mtDNA transcript processing due to deficient function of HSD10 in the mtRNase P complex. A surprisingly large number of other, mostly enzymatic and potentially clinically relevant functions have been attributed to HSD10. Recently, HSD10 was reported to exhibit phospholipase C-like activity towards cardiolipins (CL), important mitochondrial phospholipids. To assess the physiological role of the proposed CL-cleaving function, we studied CL architectures in living cells and patient fibroblasts in different genetic backgrounds and lipid environments using our well-established LC–MS/MS cardiolipidomic pipeline. These experiments revealed no measurable effect on CLs, indicating that HSD10 does not have a physiologically relevant function towards CL metabolism. Evolutionary constraints could explain the broad range of reported substrates for HSD10 in vitro. The combination of an essential structural with a non-essential enzymatic function in the same protein could direct the evolutionary trajectory towards improvement of the former, thereby increasing the flexibility of the binding pocket, which is consistent with the results presented here

    Automated validation of genetic variants from large databases: ensuring that variant references refer to the same genomic locations

    Get PDF
    Summary: Accurate annotations of genomic variants are necessary to achieve full-genome clinical interpretations that are scientifically sound and medically relevant. Many disease associations, especially those reported before the completion of the HGP, are limited in applicability because of potential inconsistencies with our current standards for genomic coordinates, nomenclature and gene structure. In an effort to validate and link variants from the medical genetics literature to an unambiguous reference for each variant, we developed a software pipeline and reviewed 68 641 single amino acid mutations from Online Mendelian Inheritance in Man (OMIM), Human Gene Mutation Database (HGMD) and dbSNP. The frequency of unresolved mutation annotations varied widely among the databases, ranging from 4 to 23%. A taxonomy of primary causes for unresolved mutations was produced

    The high-pressure phase of boron, {\gamma}-B28: disputes and conclusions of 5 years after discovery

    Full text link
    {\gamma}-B28 is a recently established high-pressure phase of boron. Its structure consists of icosahedral B12 clusters and B2 dumbbells in a NaCl-type arrangement (B2){\delta}+(B12){\delta}- and displays a significant charge transfer {\delta}~0.5- 0.6. The discovery of this phase proved essential for the understanding and construction of the phase diagram of boron. {\gamma}-B28 was first experimentally obtained as a pure boron allotrope in early 2004 and its structure was discovered in 2006. This paper reviews recent results and in particular deals with the contentious issues related to the equation of state, hardness, putative isostructural phase transformation at ~40 GPa, and debates on the nature of chemical bonding in this phase. Our analysis confirms that (a) calculations based on density functional theory give an accurate description of its equation of state, (b) the reported isostructural phase transformation in {\gamma}-B28 is an artifact rather than a fact, (c) the best estimate of hardness of this phase is 50 GPa, (d) chemical bonding in this phase has a significant degree of ionicity. Apart from presenting an overview of previous results within a consistent view grounded in experiment, thermodynamics and quantum mechanics, we present new results on Bader charges in {\gamma}-B28 using different levels of quantum-mechanical theory (GGA, exact exchange, and HSE06 hybrid functional), and show that the earlier conclusion about significant degree of partial ionicity in this phase is very robust

    Ionic high-pressure form of elemental boron

    Full text link
    Boron is an element of fascinating chemical complexity. Controversies have shrouded this element since its discovery was announced in 1808: the new 'element' turned out to be a compound containing less than 60-70 percent of boron, and it was not until 1909 that 99-percent pure boron was obtained. And although we now know of at least 16 polymorphs, the stable phase of boron is not yet experimentally established even at ambient conditions. Boron's complexities arise from frustration: situated between metals and insulators in the periodic table, boron has only three valence electrons, which would favour metallicity, but they are sufficiently localized that insulating states emerge. However, this subtle balance between metallic and insulating states is easily shifted by pressure, temperature and impurities. Here we report the results of high-pressure experiments and ab initio evolutionary crystal structure predictions that explore the structural stability of boron under pressure and, strikingly, reveal a partially ionic high-pressure boron phase. This new phase is stable between 19 and 89 GPa, can be quenched to ambient conditions, and has a hitherto unknown structure (space group Pnnm, 28 atoms in the unit cell) consisting of icosahedral B12 clusters and B2 pairs in a NaCl-type arrangement. We find that the ionicity of the phase affects its electronic bandgap, infrared adsorption and dielectric constants, and that it arises from the different electronic properties of the B2 pairs and B12 clusters and the resultant charge transfer between them.Comment: Published in Nature 453, 863-867 (2009

    Uniformly curated signaling pathways reveal tissue-specific cross-talks and support drug target discovery

    Full text link
    Motivation: Signaling pathways control a large variety of cellular processes. However, currently, even within the same database signaling pathways are often curated at different levels of detail. This makes comparative and cross-talk analyses difficult. Results: We present SignaLink, a database containing 8 major signaling pathways from Caenorhabditis elegans, Drosophila melanogaster, and humans. Based on 170 review and approx. 800 research articles, we have compiled pathways with semi-automatic searches and uniform, well-documented curation rules. We found that in humans any two of the 8 pathways can cross-talk. We quantified the possible tissue- and cancer-specific activity of cross-talks and found pathway-specific expression profiles. In addition, we identified 327 proteins relevant for drug target discovery. Conclusions: We provide a novel resource for comparative and cross-talk analyses of signaling pathways. The identified multi-pathway and tissue-specific cross-talks contribute to the understanding of the signaling complexity in health and disease and underscore its importance in network-based drug target selection. Availability: http://SignaLink.orgComment: 9 pages, 4 figures, 2 tables and a supplementary info with 5 Figures and 13 Table
    • …
    corecore