402 research outputs found
Driving Rydberg-Rydberg transitions from a co-planar microwave waveguide
The coherent interaction between ensembles of helium Rydberg atoms and
microwave fields in the vicinity of a solid-state co-planar waveguide is
reported. Rydberg-Rydberg transitions, at frequencies between 25 GHz and 38
GHz, have been studied for states with principal quantum numbers in the range
30 - 35 by selective electric-field ionization. An experimental apparatus
cooled to 100 K was used to reduce effects of blackbody radiation.
Inhomogeneous, stray electric fields emanating from the surface of the
waveguide have been characterized in frequency- and time-resolved measurements
and coherence times of the Rydberg atoms on the order of 250 ns have been
determined.Comment: 5 pages, 5 figure
Measuring the dispersive frequency shift of a rectangular microwave cavity induced by an ensemble of Rydberg atoms
In recent years the interest in studying interactions of Rydberg atoms or
ensembles thereof with optical and microwave frequency fields has steadily
increased, both in the context of basic research and for potential applications
in quantum information processing. We present measurements of the dispersive
interaction between an ensemble of helium atoms in the 37s Rydberg state and a
single resonator mode by extracting the amplitude and phase change of a weak
microwave probe tone transmitted through the cavity. The results are in
quantitative agreement with predictions made on the basis of the dispersive
Tavis-Cummings Hamiltonian. We study this system with the goal of realizing a
hybrid between superconducting circuits and Rydberg atoms. We measure maximal
collective coupling strengths of 1 MHz, corresponding to 3*10^3 Rydberg atoms
coupled to the cavity. As expected, the dispersive shift is found to be
inversely proportional to the atom-cavity detuning and proportional to the
number of Rydberg atoms. This possibility of measuring the number of Rydberg
atoms in a nondestructive manner is relevant for quantitatively evaluating
scattering cross sections in experiments with Rydberg atoms
Dissociation energy of the hydrogen molecule at 10 accuracy
The ionization energy of ortho-H has been determined to be
cm
from measurements of the GK(1,1)--X(0,1) interval by Doppler-free two-photon
spectroscopy using a narrow band 179-nm laser source and the ionization energy
of the GK(1,1) state by continuous-wave near-infrared laser spectroscopy.
(H) was used to derive the dissociation energy of
H, (H), at cm with a
precision that is more than one order of magnitude better than all previous
results. The new result challenges calculations of this quantity and represents
a benchmark value for future relativistic and QED calculations of molecular
energies.Comment: 6 pages, 5 figure
The relevance of model-driven engineering thirty years from now
International audienceAlthough model-driven engineering (MDE) is now an established approach for developing complex software systems, it has not been universally adopted by the software industry. In order to better understand the reasons for this, as well as to identify future opportunities for MDE, we carried out a week-long design thinking experiment with 15 MDE experts. Participants were facilitated to identify the biggest problems with current MDE technologies, to identify grand challenges for society in the near future, and to identify ways that MDE could help to address these challenges. The outcome is a reflection of the current strengths of MDE, an outlook of the most pressing challenges for society at large over the next three decades, and an analysis of key future MDE research opportunities
Skin microbiome in atopic dermatitis
Atopic dermatitis is a common inflammatory skin disease with a complex pathogenesis that includes imbalanced immune system signalling, impaired skin barrier and enhanced Staphylococcus aureus skin colonization. The skin bacterial communities are characterized by increasing abundance of S. aureus, leading to reduced diversity compared with the bacterial communities on healthy skin, and increasing disease severity. In contrast, fungal communities are richer and more diverse on the skin of patients with atopic dermatitis, although distribution of the most common species is similar in patients and controls. Filaggrin deficiency in atopic dermatitis skin might be related to the enhanced skin colonization by S. aureus. In addition, S. aureus expressing variant virulence factors have been shown to elicit atopic dermatitis-like phenotypes in mice, indicating that specific S. aureus strains can induce flare-ups. This review aims to provide an overview of the recent literature on the skin microbiome in atopic dermatitis
Tensor based multichannel reconstruction for breast tumours identification from DCE-MRIs
A new methodology based on tensor algebra that uses a higher order singular value decomposition
to perform three-dimensional voxel reconstruction from a series of temporal images
obtained using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is proposed.
Principal component analysis (PCA) is used to robustly extract the spatial and temporal
image features and simultaneously de-noise the datasets. Tumour segmentation on
enhanced scaled (ES) images performed using a fuzzy C-means (FCM) cluster algorithm is
compared with that achieved using the proposed tensorial framework. The proposed algorithm
explores the correlations between spatial and temporal features in the tumours. The
multi-channel reconstruction enables improved breast tumour identification through
enhanced de-noising and improved intensity consistency. The reconstructed tumours have
clear and continuous boundaries; furthermore the reconstruction shows better voxel clustering
in tumour regions of interest. A more homogenous intensity distribution is also observed,
enabling improved image contrast between tumours and background, especially in places
where fatty tissue is imaged. The fidelity of reconstruction is further evaluated on the basis
of five new qualitative metrics. Results confirm the superiority of the tensorial approach. The
proposed reconstruction metrics should also find future applications in the assessment of
other reconstruction algorithms
High molecular weight polystyrene particles by cationic miniemulsion polymerization catalyzed by an iron-containing imidazolium-based ionic liquid
Cationic styrene polymerizations in aqueous media were conducted using the miniemulsion polymerization technique with the ionic liquid 1-N-butyl-3-N-methylimidazolium heptachloro diferrate (BMI.Fe2Cl7) as catalyst, hexadecyltrimethylammonium bromide (CTAB) as surfactant and hexadecane as costabilizer. The ionic liquid
was effective to initiate styrene miniemulsion polymerization at a BMI.Fe2Cl7:styrene molar ratios as low as 1:1000. Increasing the reaction temperature from 70 °C to 90 °C led to an increase in both, conversion and molecular weight. And polystyrene with much higher molecular weight (viscosity average molecular weights of up to 2231 kDa) than those usually obtained in cationic polymerizations was produced. Furthermore, while particle sizes remained almost constant around 150 nm during polymerizations, an almost linear increase of conversion with reaction time was observed. In addition, molecular weight increased steadily with conversion approaching the behavior of living cationic polymerization.
Please click Additional Files below to see the full abstrac
Current knowledge on biomarkers for contact sensitization and allergic contact dermatitis.
Contact sensitization is common and affects up to 20% of the general population. The clinical manifestation of contact sensitization is allergic contact dermatitis. This is a clinical expression that is sometimes difficult to distinguish from other types of dermatitis, for example irritant and atopic dermatitis. Several studies have examined the pathogenesis and severity of allergic contact dermatitis by measuring the absence or presence of various biomarkers. In this review, we provide a non-systematic overview of biomarkers that have been studied in allergic contact dermatitis. These include genetic variations and mutations, inflammatory mediators, alarmins, proteases, immunoproteomics, lipids, natural moisturizing factors, tight junctions, and antimicrobial peptides. We conclude that, despite the enormous amount of data, convincing specific biomarkers for allergic contact dermatitis are yet to be described
The Prevalence and Severity of Hand Eczema Among Adults in Tasiilaq, East Greenland
Background: Hand eczema (HE) is described as a common disease in Greenland, but studies on its epidemiology and severity are lacking. Objectives: To investigate the point prevalence and severity of HE among adults in East Greenland in relation to age, sex, and occupation. Methods: In May 2022, we conducted a cross-sectional study in Tasiilaq, East Greenland. All adults aged ≥ 18 years were invited (n = 1311 individuals). Results: A total of 295 participants accepted the invitation. Among these, the point prevalence of HE was 22.4% (95% confidence interval [CI]: 18.0–27.5, n = 66/295), and 5.0% based on the total invited population (n = 66/1311). The median age of participants with HE was 40 years (interquartile range [IQR]: 30–54), and the median age at disease onset was 25 years ([IQR]: 19–40). Females were more frequently affected than males (65.2%, n = 43/66). Atopic dermatitis was diagnosed in 7.6% of participants with HE. The mean Hand Eczema Severity Index (HECSI) score was 21 (range 2–112), and exposure to wet work was reported by 57.4% of the participants with HE. Conclusions: Hand eczema is common in East Greenland, with a point prevalence similar to that in Nordic countries. The severity and distribution of HE in relation to age, sex, and occupation were comparable to those reported in other European studies.</p
- …
