79 research outputs found

    Review of catch trends and changes in fish species composition of the Volta lake during its 45 years of existence

    Get PDF
    Existing catch data for the whole of the Volta lake from 1969 to 2004 and those for certain segments of the lake (Strata II, III, and IV) covering various periods were analysed in relation to lake levels, to find out changes in catch trends and species composition. The study was undertaken as a baseline activity aimed at enhancing fisheries productivity and  management of the lake. Higher catches were made at the inception of the lake, with about 65,000 t being recorded in 1969. This dropped and  fluctuated between 36,000 anct48,000 t from 1971 to 1994. Catches kept increasing rapidly from 1995 with about 80,000 t being recorded in 1999, the highest in the history of the lake. In relation to annual fake water level fluctuations, high catches were made during periods of low water level compared to periods of high water level. On the long term, decreasing lake water level corresponded with higher fish catches. There was a change frominsectivorous fish species (e.g., Chrysichthys, Schilhe and Synodontis) at the initial stages of the formation of the lake to those with vegetarian food habits dominated by the tilapias. The dominance oftilapias in catches, which persisted till the early parts of the 1990s, has given way to Chrysichthys spp., suggesting that the composition of fish species in the lake is still undergoing changes 45 years after its formation

    Effect of testosterone propionate on hippocampal pyramidal neuron number in female rats

    Get PDF
    INTRODUCTION The hippocampus is an important region of the brain that regulates cognitive and emotional functions. In this study, we examined the impact of perinatal administration of testosterone propionate (TP) on the number of pyramidal neurons in the CA1 and CA3 regions of the hippocampi of female rats. METHODS Five groups of rats were used in this study. Three groups of female rats were administered TP in either both the prenatal and the postnatal periods (Group 1), only the prenatal period (Group 2) or only the postnatal period (Group 3). The other two groups of rats included control females (Group 4) and control males (Group 5). The rats were sacrificed on postnatal Day 120 and their brains were analysed for hippocampal pyramidal neuron number using stereological methods. RESULTS Control male rats (Group 5; p = 0.043) and TP-treated female rats in Groups 1 (p = 0.012) and 2 (p = 0.037), but not Group 3 (p > 0.05), had a significantly higher number of pyramidal neurons than control female rats (Group 4). The rats in Group 1 had the highest number of pyramidal neurons among the female rats. CONCLUSION Perinatal TP treatment has an augmenting effect on the number of pyramidal neurons in the hippocampi of female rats. We also found gender-based differences in the hippocampi of male and female rats, with a higher number of pyramidal neurons seen in male rats. Continuous TP administration during the prenatal and postnatal periods is more effective than administration only in the prenatal or postnatal period

    A biochemical laboratory manual for species characterization of some tilapiine fishes

    Get PDF
    This publication is both a manual for the biochemical analysis of several tissues of tilapias and an empirical demonstration of the methods for several species. Given the great and growing importance of tilapia in aquaculture and the importance of knowing the genetic composition of broodstock, the present work pays particular attention to blood-based tests in an effort to determine whether non-destructive sampling of fish tissue is feasible.Stock identification, Genetics, Racial studies, Biochemical analysis, Analytical techniques, Manuals, Ghana, Tilapia, Sarotherodon, Oreochromis

    Improved fisheries productivity and management in tropical reservoirs

    Get PDF
    “Improved fisheries productivity and management in tropical reservoirs” The objective of the project was to contribute to the current research on reservoirs enhancement fisheries in tropical countries through the implementation of a series of action-research activities implemented in two small reservoirs in the Indo-Gangetic basin in India, and two very large reservoirs in Africa, the Lake Nasser (Egypt), and the Volta Lake (Ghana). Socio-institutional analyses were also conducted in these reservoirs to improve our knowledge regarding some of the main social processes that influence reservoir productivity. Overall the results of the project stress that while the natural biophysical constraints of the reservoirs are important in defining the ecological production processes, it is the socio-economic settings characterizing the community/societies around the reservoirs that eventually shape the human production enhancement possibilities

    Determinants on an efficient cellulase recycling process for the production of bioethanol from recycled paper sludge under high solid loadings

    Get PDF
    Background: In spite of the continuous efforts and investments in the last decades, lignocellulosic ethanol is still not economically competitive with fossil fuels. Optimization is still required in different parts of the process. Namely, the cost effective usage of enzymes has been pursued by different strategies, one of them being recycling. Results: Cellulase recycling was analyzed on Recycled Paper Sludge (RPS) conversion into bioethanol under intensified conditions. Different cocktails were studied regarding thermostability, hydrolysis efficiency, distribution in the multiphasic system and recovery from solid. Celluclast showed inferior stability at higher temperatures (45-55 ºC), nevertheless its performance at moderate temperatures (40ºC) was slightly superior to other cocktails (ACCELLERASE®1500 and Cellic®CTec2). Celluclast distribution in the solid-liquid medium was also more favorable, enabling to recover 88 % of final activity at the end of the process. A Central Composite Design studied the influence of solids concentration and enzyme dosage on RPS conversion by Celluclast. Solids concentration showed a significant positive effect on glucose production, no major limitations being found from utilizing high amounts of solids under the studied conditions. Increasing enzyme loading from 20 to 30 FPU/ gcellulose had no significant effect on sugars production, suggesting that 22 % solids and 20 FPU/gcellulose are the best operational conditions towards an intensified process. Applying these, a system of multiple rounds of hydrolysis with enzyme recycling was implemented, allowing to maintain steady levels of enzyme activity with only 50 % of enzyme on each recycling stage. Additionally, interesting levels of solid conversion (70-81 %) were also achieved, leading to considerable improvements on glucose and ethanol production comparatively with the reports available so far (3.4 and 3.8 fold, respectively). Conclusions: Enzyme recycling viability depends on enzyme distribution between the solid and liquid phases at the end of hydrolysis, as well as enzymes thermostability. Both are critical features to be observed for a judicious choice of enzyme cocktail. This work demonstrates that enzyme recycling in intensified biomass degradation can be achieved through simple means. The process is possibly much more effective at larger scale, hence novel enzyme formulations favoring this possibility should be developed for industrial usage.This work had the fnancial support of the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/ BIO/04469/2013 unit, COMPETE 2020 (POCI-01-0145-FEDER-006684) and the MultiBiorefnery project (POCI-01-0145-FEDER-016403). Furthermore, FCT equally supported the Ph.D. grant to DG (SFRH/BD/88623/2012).info:eu-repo/semantics/publishedVersio

    Dynasore, a Dynamin Inhibitor, Inhibits Trypanosoma cruzi Entry into Peritoneal Macrophages

    Get PDF
    BACKGROUND: Trypanosoma cruzi is an intracellular parasite that, like some other intracellular pathogens, targets specific proteins of the host cell vesicular transport machinery, leading to a modulation of host cell processes that results in the generation of unique phagosomes. In mammalian cells, several molecules have been identified that selectively regulate the formation of endocytic transport vesicles and the fusion of such vesicles with appropriate acceptor membranes. Among these, the GTPase dynamin plays an important role in clathrin-mediated endocytosis, and it was recently found that dynamin can participate in a phagocytic process. METHODOLOGY/PRINCIPAL FINDINGS: We used a compound called dynasore that has the ability to block the GTPase activity of dynamin. Dynasore acts as a potent inhibitor of endocytic pathways by blocking coated vesicle formation within seconds of its addition. Here, we investigated whether dynamin is involved in the entry process of T. cruzi in phagocytic and non-phagocytic cells by using dynasore. In this aim, peritoneal macrophages and LLC-MK2 cells were treated with increasing concentrations of dynasore before interaction with trypomastigotes, amastigotes or epimastigotes. We observed that, in both cell lines, the parasite internalization was drastically diminished (by greater than 90% in LLC-MK2 cells and 70% in peritoneal macrophages) when we used 100 microM dynasore. The T. cruzi adhesion index, however, was unaffected in either cell line. Analyzing these interactions by scanning electron microscopy and comparing peritoneal macrophages to LLC-MK2 cells revealed differences in the stage at which cell entry was blocked. In LLC-MK2 cells, this blockade is observed earlier than it is in peritoneal macrophages. In LLC-MK2 cells, the parasites were only associated with cellular microvilli, whereas in peritoneal macrophages, trypomastigotes were not completely engulfed by a host cell plasma membrane. CONCLUSIONS/SIGNIFICANCE: Taken together our results demonstrate that dynamin is an essential molecule necessary for cell invasion and specifically parasitophorous vacuole formation by host cells during interaction with Trypanosoma cruzi

    Remodeling of extracellular matrix by normal and tumor-associated fibroblasts promotes cervical cancer progression

    Get PDF
    Background: Comparison of tissue microarray results of 29 cervical cancer and 27 normal cervix tissue samples using immunohistochemistry revealed considerable reorganization of the fibrillar stroma of these tumors. Preliminary densitometry analysis of laminin-1, α -smooth muscle actin (SMA) and fibronectin immunostaining demonstrated 3.8-fold upregulation of laminin-1 and 5.2-fold increase of SMA in the interstitial stroma, indicating that these proteins and the activated fibroblasts play important role in the pathogenesis of cervical cancer. In the present work we investigated the role of normal and tumor-associated fibroblasts. Methods: In vitro models were used to throw light on the multifactorial process of tumor-stroma interaction, by means of studying the cooperation between tumor cells and fibroblasts. Fibroblasts from normal cervix and cervical cancers were grown either separately or in co-culture with CSCC7 cervical cancer cell line. Changes manifest in secreted glycoproteins, integrins and matrix metallo-proteases (MMPs) were explored. Results: While normal fibroblasts produced components of interstitial matrix and TGF- β 1 that promoted cell proliferation, cancer-associated fibroblasts (CAFs) synthesized ample amounts of laminin-1. The following results support the significance of laminin-1 in the invasion of CSCC7 cells: 1.) Tumor-associated fibroblasts produced more laminin-1 and less components of fibrillar ECM than normal cells; 2.) The production of laminin chains was further increased when CSCC7 cells were grown in co-culture with fibroblasts; 3.) CSCC7 cells were capable of increasing their laminin production; 4.) Tumor cells predominantly expressed integrin α 6 β 4 laminin receptors and migrated towards laminin. The integrin profile of both normal and tumor-associated fibroblasts was similar, expressing receptors for fibronectin, vitronectin and osteopontin. MMP-7 secreted by CSCC7 cells was upregulated by the presence of normal fibroblasts, whereas MMP-2 produced mainly by fibroblasts was activated in the presence of CSCC7 cells. Conclusions: Our results indicate that in addition to degradation of the basement membrane, invasion of cervical cancer is accomplished by the remodeling of the interstitial stroma, which process includes decrease and partial replacement of fibronectin and collagens by a laminin-rich matrix

    Entry of Human Papillomavirus Type 16 by Actin-Dependent, Clathrin- and Lipid Raft-Independent Endocytosis

    Get PDF
    Infectious endocytosis of incoming human papillomavirus type 16 (HPV-16), the main etiological agent of cervical cancer, is poorly characterized in terms of cellular requirements and pathways. Conflicting reports attribute HPV-16 entry to clathrin-dependent and -independent mechanisms. To comprehensively describe the cell biological features of HPV-16 entry into human epithelial cells, we compared HPV-16 pseudovirion (PsV) infection in the context of cell perturbations (drug inhibition, siRNA silencing, overexpression of dominant mutants) to five other viruses (influenza A virus, Semliki Forest virus, simian virus 40, vesicular stomatitis virus, and vaccinia virus) with defined endocytic requirements. Our analysis included infection data, i.e. GFP expression after plasmid delivery by HPV-16 PsV, and endocytosis assays in combination with electron, immunofluorescence, and video microscopy. The results indicated that HPV-16 entry into HeLa and HaCaT cells was clathrin-, caveolin-, cholesterol- and dynamin-independent. The virus made use of a potentially novel ligand-induced endocytic pathway related to macropinocytosis. This pathway was distinct from classical macropinocytosis in regards to vesicle size, cholesterol-sensitivity, and GTPase requirements, but similar in respect to the need for tyrosine kinase signaling, actin dynamics, Na+/H+ exchangers, PAK-1 and PKC. After internalization the virus was transported to late endosomes and/or endolysosomes, and activated through exposure to low pH

    Validating the predictive ability of the 2MACE score for major adverse cardiovascular events in patients with atrial fibrillation: results from phase II/III of the GLORIA-AF registry

    Get PDF
    The 2MACE score was specifically developed as a risk-stratification tool in atrial fibrillation (AF) to predict cardiovascular outcomes. We evaluated the predictive ability of the 2MACE score in the GLORIA-AF registry. All eligible patients from phase II/III of the prospective global GLORIA-AF registry were included. Major adverse cardiac events (MACEs) were defined as the composite outcome of stroke, myocardial infarction and cardiovascular death. Cox proportional hazards were used to examine the relationship between the 2MACE score and study outcomes. Predictive capability of the 2MACE score was investigated using receiver-operating characteristic curves. A total of 25,696 patients were included (mean age 71 years, female 44.9%). Over 3 years, 1583 MACEs were recorded. Patients who had MACE were older, with more cardiovascular risk factors and were less likely to be managed using a rhythm-control strategy. The median 2MACE score in the MACE and non-MACE groups were 2 (IQR 1-3) and 1 (IQR 0-2), respectively (p < 0.001). The 2MACE score was positively associated with an increase in the risk of MACE, with a score of & GE; 2 providing the best combination of sensitivity (69.6%) and specificity (51.6%), HR 2.47 (95% CI, 2.21-2.77). The 2MACE score had modest predictive performance for MACE in patients with AF (AUC 0.655 (95% CI, 0.641-0.669)). Our analysis in this prospective global registry demonstrates that the 2MACE score can adequately predict the risk of MACE (defined as myocardial infarction, CV death and stroke) in patients with AF. Clinical trial registration:. Unique identifiers: NCT01468701, NCT01671007 and NCT0193737

    Essential Roles for Soluble Virion-Associated Heparan Sulfonated Proteoglycans and Growth Factors in Human Papillomavirus Infections

    Get PDF
    A subset of human papillomavirus (HPV) infections is causally related to the development of human epithelial tumors and cancers. Like a number of pathogens, HPV entry into target cells is initiated by first binding to heparan sulfonated proteoglycan (HSPG) cell surface attachment factors. The virus must then move to distinct secondary receptors, which are responsible for particle internalization. Despite intensive investigation, the mechanism of HPV movement to and the nature of the secondary receptors have been unclear. We report that HPV16 particles are not liberated from bound HSPG attachment factors by dissociation, but rather are released by a process previously unreported for pathogen-host cell interactions. Virus particles reside in infectious soluble high molecular weight complexes with HSPG, including syndecan-1 and bioactive compounds, like growth factors. Matrix mellatoproteinase inhibitors that block HSPG and virus release from cells interfere with virus infection. Employing a co-culture assay, we demonstrate HPV associated with soluble HSPG-growth factor complexes can infect cells lacking HSPG. Interaction of HPV-HSPG-growth factor complexes with growth factor receptors leads to rapid activation of signaling pathways important for infection, whereas a variety of growth factor receptor inhibitors impede virus-induced signaling and infection. Depletion of syndecan-1 or epidermal growth factor and removal of serum factors reduce infection, while replenishment of growth factors restores infection. Our findings support an infection model whereby HPV usurps normal host mechanisms for presenting growth factors to cells via soluble HSPG complexes as a novel method for interacting with entry receptors independent of direct virus-cell receptor interactions
    corecore