729 research outputs found

    Access to medicines in remote and rural areas: a survey of residents in the Scottish Highlands and Western Isles.

    Get PDF
    Objectives: Sparsely populated areas are potentially predisposed to health inequalities due to limited access to services. This study aimed to explore and describe issues of access to medicines and related advice experienced by residents of the Scottish Highlands and Western Isles. Study design: Cross-sectional cohort study. Methods: Anonymized questionnaires were mailed to a random sample of 6000 residents aged ≥18 years identified from the electoral register. The questionnaire contained items on: access to medicines; interactions with health care services; and perceptions of the services. Results were analysed using descriptive, inferential and spatial statistics. Results: Adjusted response rate was 49.5% (2913/5889). Almost two thirds (63.4%, 1847) were prescribed medicines regularly, 88.5% (1634) of whom considered the source convenient. Pharmacy (73.8%, 1364) or dispensing GP (24.0%, 443) were the most accessed sources. Prescription medicine advice was mainly obtained from the GP (55.7%, 1029). Respondents ≥80 years old were significantly (P0.0001) more likely to live alone (45.3%, 92) compared with those 80 (15.8%, 424). Almost a fifth (16.5%, 31) of those 80 years living alone disagreed that they obtained prescribed medicines from a convenient source. The majority of respondents who felt they did not have a convenient medicines source, regardless of urban/rural classification, lived within five miles of a pharmacy or GP practice. Conclusions: Respondents accessed medicines and advice from a variety of sources. While most considered their access to medicines convenient, there were issues for those over 80 years and living alone. Perceived convenience would not appear to be solely based on geographical proximity to supply source. This requires further exploration given that these individuals are likely to have long-term conditions and be prescribed medicines on a chronic basis

    Ibrutinib inhibits SDF1/CXCR4 mediated migration in AML

    Get PDF
    Pharmacological targeting of BTK using ibrutinib has recently shown encouraging clinical activity in a range of lymphoid malignancies. Recently we reported that ibrutinib inhibits human acute myeloid leukemia (AML) blast proliferation and leukemic cell adhesion to the surrounding bone marrow stroma cells. Here we report that in human AML ibrutinib, in addition, functions to inhibit SDF1/CXCR4-mediated AML migration at concentrations achievable in vivo. It has previously been shown that SDF1/CXCR4-induced migration is dependent on activation of downstream BTK in chronic lymphocytic leukaemia (CLL) and multiple myeloma. Here we show that SDF-1 induces BTK phosphorylation and downstream MAPK signalling in primary AML blast. Furthermore, we show that ibrutinib can inhibit SDF1-induced AKT and MAPK activation. These results reported here provide a molecular mechanistic rationale for clinically evaluating BTK inhibition in AML patients and suggests that in some AML patients the blasts count may initially rise in response to ibrutinib therapy, analgous to similar clinical observations in CLL

    The bone marrow microenvironment – Home of the leukemic blasts

    Get PDF
    Acute Myeloid Leukaemia (AML) is a genetically, biologically and clinically heterogeneous set of diseases, which are characterised by an increased growth of abnormal myeloid progenitor cells within the bone marrow (BM). Ex-vivo AML exhibits a high level of spontaneous apoptosis. Furthermore, relapse for patients achieving remission occurs from minimal residual disease harboured within the BM microenvironment. Taken together, these observations illustrate the importance of the BM microenvironment in sustaining AML. While significant progress has been made elaborating the small-scale genetic mutations and larger-scale chromosomal translocations that contribute to the development of AML and its prognosis in response to treatment, less is understood about the complex microenvironment of the BM, which is known to be a key player in the pathogenesis of the disease. As we look towards future therapies, the consideration that the BM microenvironment is uniquely important as a niche for AML - coupled with the idea that leukaemic blasts are more likely to be genetically unstable and therefore evolve resistance to conventional chemotherapies - make the functions of the non-malignant cells of the BM attractive targets for therapy. In this review, we discuss the microanatomy of the BM and provide an overview of the evidence supporting the role of the BM microenvironment in creating conditions conducive to the survival and proliferation of AML blasts. Ultimately, we examine the therapeutic potential of uncoupling AML from the BM microenvironment

    Causal role of a neural system for separating and selecting multidimensional social cognitive information

    Get PDF
    People are multi-faceted, typically good at some things but bad at others, and a critical aspect of social judgement is the ability to focus on those traits relevant for the task at hand. However, it remains unknown how the brain supports such context-dependent social judgement. Here, we examine how people represent multidimensional individuals, and how the brain extracts relevant information and filters out irrelevant information when comparing individuals within a specific dimension. Using human fMRI, we identify distinct neural representations in dorsomedial prefrontal cortex (dmPFC) and anterior insula (AI) supporting separation and selection of information for context-dependent social judgement. Causal evaluation using non-invasive brain stimulation shows that AI disruption alters the impact of relevant information on social comparison, whereas dmPFC disruption only affects the impact of irrelevant information. This neural circuit is distinct from the one supporting integration across, as opposed to separation of, different features of a multidimensional cognitive space

    An Evaluation of the Telecare Talk Pilot

    Get PDF

    NRF2-driven miR-125B1 and miR-29B1 transcriptional regulation controls a novel anti-apoptotic miRNA regulatory network for AML survival

    Get PDF
    Transcription factor NRF2 is an important regulator of oxidative stress. It is involved in cancer progression, and has abnormal constitutive expression in acute myeloid leukaemia (AML). Posttranscriptional regulation by microRNAs (miRNAs) can affect the malignant phenotype of AML cells. In this study, we identified and characterised NRF2-regulated miRNAs in AML. An miRNA array identified miRNA expression level changes in response to NRF2 knockdown in AML cells. Further analysis of miRNAs concomitantly regulated by knockdown of the NRF2 inhibitor KEAP1 revealed the major candidate NRF2-mediated miRNAs in AML. We identified miR-125B to be upregulated and miR-29B to be downregulated by NRF2 in AML. Subsequent bioinformatic analysis identified putative NRF2 binding sites upstream of the miR-125B1 coding region and downstream of the mir-29B1 coding region. Chromatin immunoprecipitation analyses showed that NRF2 binds to these antioxidant response elements (AREs) located in the 5′ untranslated regions of miR-125B and miR-29B. Finally, primary AML samples transfected with anti-miR-125B antagomiR or miR-29B mimic showed increased cell death responsiveness either alone or co-treated with standard AML chemotherapy. In summary, we find that NRF2 regulation of miR-125B and miR-29B acts to promote leukaemic cell survival, and their manipulation enhances AML responsiveness towards cytotoxic chemotherapeutics

    Targeting BTK for the treatment of FLT3-ITD mutated acute myeloid leukemia

    Get PDF
    Approximately 20% of patients with acute myeloid leukaemia (AML) have a mutation in FMS-like-tyrosine-kinase-3 (FLT3). FLT3 is a trans-membrane receptor with a tyrosine kinase domain which, when activated, initiates a cascade of phosphorylated proteins including the SRC family of kinases. Recently our group and others have shown that pharmacologic inhibition and genetic knockdown of Bruton's tyrosine kinase (BTK) blocks AML blast proliferation, leukaemic cell adhesion to bone marrow stromal cells as well as migration of AML blasts. The anti-proliferative effects of BTK inhibition in human AML are mediated via inhibition of downstream NF-κB pro-survival signalling however the upstream drivers of BTK activation in human AML have yet to be fully characterised. Here we place the FLT3-ITD upstream of BTK in AML and show that the BTK inhibitor ibrutinib inhibits the survival and proliferation of FLT3-ITD primary AML blasts and AML cell lines. Furthermore ibrutinib inhibits the activation of downstream kinases including MAPK, AKT and STAT5. In addition we show that BTK RNAi inhibits proliferation of FLT3-ITD AML cells. Finally we report that ibrutinib reverses the cyto-protective role of BMSC on FLT3-ITD AML survival. These results argue for the evaluation of ibrutinib in patients with FLT3-ITD mutated AML

    Myeloma-derived macrophage inhibitory factor regulates bone marrow stromal cell-derived IL-6 via c-MYC

    Get PDF
    Multiple myeloma (MM) remains an incurable malignancy despite the recent advancements in its treatment. The protective effects of the niche in which it develops has been well documented; however, little has been done to investigate the MM cell’s ability to ‘re-program’ cells within its environment to benefit disease progression. Here, we show that MM-derived macrophage migratory inhibitory factor (MIF) stimulates bone marrow stromal cells to produce the disease critical cytokines IL-6 and IL-8, prior to any cell-cell contact. Furthermore, we provide evidence that this IL-6/8 production is mediated by the transcription factor cMYC. Pharmacological inhibition of cMYC in vivo using JQ1 led to significantly decreased levels of serum IL-6—a highly positive prognostic marker in MM patients
    • …
    corecore