46 research outputs found
Attosecond nanoplasmonic streaking of localized fields near metal nanospheres
Collective electron dynamics in plasmonic nanosystems can unfold on
timescales in the attosec- ond regime and the direct measurements of plasmonic
near-field oscillations is highly desirable. We report on numerical studies on
the application of attosecond nanoplasmonic streaking spectroscopy to the
measurement of collective electron dynamics in isolated Au nanospheres. The
plasmonic field oscillations are induced by a few-cycle NIR driving field and
are mapped by the energy of photoemitted electrons using a synchronized,
time-delayed attosecond XUV pulse. By a detailed analysis of the amplitudes and
phase shifts, we identify the different regimes of nanoplasmonic streaking and
study the dependence on particle size, XUV photoelectron energy and emission
position. The simulations indicate that the near-fields around the
nanoparticles can be spatio-temporally reconstructed and may give detailed
insight into the build-up and decay of collective electron motion.Comment: Revised versio
Single-shot velocity-map imaging of attosecond light-field control at kilohertz rate
High-speed, single-shot velocity-map imaging (VMI) is combined with carrier-
envelope phase (CEP) tagging by a single-shot stereographic above-threshold
ionization (ATI) phase-meter. The experimental setup provides a versatile tool
for angle-resolved studies of the attosecond control of electrons in atoms,
molecules, and nanostructures. Single-shot VMI at kHz repetition rate is
realized with a highly sensitive megapixel complementary metal-oxide
semiconductor camera omitting the need for additional image intensifiers. The
developed camerasoftware allows for efficient background suppression and the
storage of up to 1024 events for each image in real time. The approach is
demonstrated by measuring the CEP-dependence of the electron emission from ATI
of Xe in strong (≈1013 W/cm2) near single-cycle (4 fs) laser fields. Efficient
background signal suppression with the system is illustrated for the electron
emission from SiO2nanospheres
Field propagation-induced directionality of carrier-envelope phase-controlled photoemission from nanospheres
Near-fields of non-resonantly laser-excited nanostructures enable strong localization of ultrashort light fields and have opened novel routes to fundamentally modify and control electronic strong-field processes. Harnessing spatiotemporally tunable near-fields for the steering of sub-cycle electron dynamics may enable ultrafast optoelectronic devices and unprecedented control in the generation of attosecond electron and photon pulses. Here we utilize unsupported sub-wavelength dielectric nanospheres to generate near-fields with adjustable structure and study the resulting strong-field dynamics via photoelectron imaging. We demonstrate field propagation-induced tunability of the emission direction of fast recollision electrons up to a regime, where nonlinear charge interaction effects become dominant in the acceleration process. Our analysis supports that the timing of the recollision process remains controllable with attosecond resolution by the carrier-envelope phase, indicating the possibility to expand near-field-mediated control far into the realm of high-field phenomena
Carrier - envelope phase-tagged imaging of the controlled electron acceleration from SiO2 nanospheres in intense few-cycle laser fields
Waveform-controlled light fields offer the possibility of manipulating
ultrafast electronic processes on sub-cycle timescales. The optical lightwave
control of the collective electron motion in nanostructured materials is key
to the design of electronic devices operating at up to petahertz frequencies.
We have studied the directional control of the electron emission from 95 nm
diameter SiO2 nanoparticles in few-cycle laser fields with a well-defined
waveform. Projections of the three-dimensional (3D) electron momentum
distributions were obtained via single-shot velocity-map imaging (VMI), where
phase tagging allowed retrieving the laser waveform for each laser shot. The
application of this technique allowed us to efficiently suppress background
contributions in the data and to obtain very accurate information on the
amplitude and phase of the waveform-dependent electron emission. The
experimental data that are obtained for 4 fs pulses centered at 720 nm at
different intensities in the range (1–4) × 1013 W cm−2 are compared to quasi-
classical mean-field Monte-Carlo simulations. The model calculations identify
electron backscattering from the nanoparticle surface in highly dynamical
localized fields as the main process responsible for the energetic electron
emission from the nanoparticles. The local field sensitivity of the electron
emission observed in our studies can serve as a foundation for future research
on propagation effects for larger particles and field-induced material changes
at higher intensities
Recommended from our members
Quenching of material dependence in few-cycle driven electron acceleration from nanoparticles under many-particle charge interaction
The excitation of nanoscale near-fields with ultrashort and intense laser pulses of well-defined waveform enables strongly spatially and temporally localized electron emission, opening up the possibility for the generation of attosecond electron pulses. Here, we investigate the electron photoemission from isolated nanoparticles of different materials in few-cycle laser fields at intensities where the Coulomb field of the ionized electrons and residual ions significantly contribute to the electron acceleration process. The dependences of the electron cut-off energy on the material’s dielectric properties and electron binding energy are investigated systematically in both experiments and semi-classical simulations. We find that for sufficiently high near-field intensities the material dependence of the acceleration in the enhanced near-fields is quenched by many-particle charge-interaction
Reaktivitätsbestimrnung an der graphitmoderierten Kritischen Anlage KAHTER mittels Rauchsanalyse
Mit Hilfe eines neuen Meßverfahrens auf der Basis der Neutronenrauschanalyse wurden Reaktivitätsmessungen sowie Bestimmungender prompten Neutronenabklingkonstanten an einem extrem langsamen System, der "Kritischen Anlage Hochtemperaturreaktor" des Instituts für Reaktorentwicklung der KFA-Jülich (=3.8 s ) durchgeführt. Das Verfahren ermöglicht die Bestimmung des Reaktorzustandes bei geringer Meßdauer und - im Vergleich mit anderen Methoden - auch relativ geringem Aufwand an Geräten. Dadurch, daß die Meßergebnisse bei festem Reaktorzustand von der Position der Detektoren unabhängig sind, ist eine rechnerische Korrektur der Meßergebnisse nicht notwendig. Der Reaktorzustand ergibt sich direkt aus dem Nulldurchgang der Korrelationsfunktion. Um die Anwendbarkeit dieser Meßmethode auf Leistungsreaktoren zu prüfen, wurde die mindestens notwendigeDetektor-Efficiency bestimmt. Es ergab sich, daß der Einsatz in großen HTR-Reaktoren, beispielsweise zur Oberwachung der Unterkritikalität im abgeschalteten Zustand, nicht ohne weiteres möglich ist, da dann die notwendige Detektor-Efficiency von etwa 10 nur sehr schwer zu erreichen sein dürfte. Möglich sind jedoch mit dieser Methode -Messungen auch bei großen HTRs beim erstmaligen Anfahren des Reaktors