185 research outputs found

    Age, geochemistry, and origin of the mid-Proterozoic Häme mafic dyke swarm, southern Finland

    Get PDF
    We have reappraised the age and composition of the mid-Proterozoic Häme dyke swarm in southern Finland. The dominant trend of the dykes of this swarm is NW to WNW. Petrographic observations and geochemical data indicate uniform, tholeiitic low- Mg parental magmas for all of the dykes. Nevertheless, the variability in incompatible trace element ratios, such as Zr/Y and La/Nb, provides evidence of changing mantle melting conditions and variable crustal contamination. Our ID-TIMS 207Pb/206Pb ages for four low-Zr/Y-type dykes indicate emplacement at 1639 ± 3 Ma, whereas the most reliable previously published ages suggest emplacement of the high-Zr/Y-type dykes at 1642 ± 2 Ma. We propose that the Häme dyke swarm, and possibly also the other mid- Proterozoic mafic dyke swarms in southern Finland, records a progressive decrease in Zr/Y values due to magma generation under developing areas of thinned lithosphere. We consider that the formation of mafic magmas was most probably associated with the upwelling of hot convective mantle in an extensional setting possibly related to the nearby Gothian orogeny. The generation of tholeiitic magmas below continental lithosphere was probably promoted by the elevated mantle temperature underneath the Nuna supercontinent. We speculate that the origin of most of the relatively small mid-Proterozoic mafic dyke swarms, anorthosites, rapakivi granites, and associated rocks found across Nuna was similarly triggered by extensional plate tectonics and the convection of anomalous hot upper mantle below the supercontinent.Peer reviewe

    Timing and tempo of the great oxidation event

    Get PDF
    The first significant buildup in atmospheric oxygen, the Great Oxidation Event (GOE), began in the early Paleoproterozoic in association with global glaciations and continued until the end of the Lomagundi carbon isotope excursion ca. 2,060 Ma. The exact timing of and relationships among these events are debated because of poor age constraints and contradictory stratigraphic correlations. Here, we show that the first Paleoproterozoic global glaciation and the onset of the GOE occurred between ca. 2,460 and 2,426 Ma, ∼100 My earlier than previously estimated, based on an age of 2,426 ± 3 Ma for Ongeluk Formation magmatism from the Kaapvaal Craton of southern Africa. This age helps define a key paleomagnetic pole that positions the Kaapvaal Craton at equatorial latitudes of 11° ± 6° at this time. Furthermore, the rise of atmospheric oxygen was not monotonic, but was instead characterized by oscillations, which together with climatic instabilities may have continued over the next ∼200 My until ≤2,250–2,240 Ma. Ongeluk Formation volcanism at ca. 2,426 Ma was part of a large igneous province (LIP) and represents a waning stage in the emplacement of several temporally discrete LIPs across a large low-latitude continental landmass. These LIPs played critical, albeit complex, roles in the rise of oxygen and in both initiating and terminating global glaciations. This series of events invites comparison with the Neoproterozoic oxygen increase and Sturtian Snowball Earth glaciation, which accompanied emplacement of LIPs across supercontinent Rodinia, also positioned at low latitude

    Risk factors and dynamics of verotoxigenic Escherichia coli O157:H7 on cattle farms: An observational study combining information from questionnaires, spatial data and molecular analyses

    Get PDF
    The increasing number of human cases infected with a highly virulent type of verotoxigenic Escherichia coli (VTEC) O157:H7 in Sweden is the result of domestic transmission originating in regional clusters of infected cattle farms. To control the spread of the bacteria a comprehensive picture of infection dynamics, routes of transmission between farms and risk factors for persistence is urgently needed. The aim of the study was to investigate different aspects of the epidemiology of VTEC O157:H7 on the Swedish island of Öland by combining information from environmental sampling of VTEC O157:H7 from 80 farms with information from farmer questionnaires, spatial and molecular analyses. The farms were sampled in the spring and fall of 2014 and on four of them additional samples were collected during summer and winter. The results show a high prevalence of VTEC O157:H7 and a high proportion of strains belonging to the virulent clade 8. Farms that became infected between samplings were all located in an area with high cattle density. The most important risk factors identified are generally associated with biosecurity and indicate that visitors travelling between farms may be important for transmission. In addition, whole genome sequencing of a subset of isolates from the four farms where additional sampling was performed revealed ongoing local transmission that cannot be observed with a lower resolution typing method. Our observations also show that VTEC O157:H7 may persist in the farm environment for extended periods of time, suggesting that specific on-farm measures to reduce environmental prevalence and spread between groups of animals may be required in these cases

    Neoarchean large igneous provinces on the Kaapvaal Craton in southern Africa re-define the formation of the Ventersdorp Supergroup and its temporal equivalents

    Get PDF
    U-Pb geochronology on baddeleyite is a powerful technique that can be applied effectively to chronostratigraphy. In southern Africa, the Kaapvaal Craton hosts a wellpreserved Mesoarchean to Paleoproterozoic geological record, including the Neoarchean Ventersdorp Supergroup. It overlies the Witwatersrand Supergroup and its world-class gold deposits. The Ventersdorp Supergroup comprises the Klipriviersberg Group, Platberg Group, and Pniel Group. However, the exact timing of formation of the Ventersdorp Supergroup is controversial. Here we present 2789 ± 4 Ma and 2787 ± 2 Ma U-Pb isotope dilution- thermal ionization mass spectrometry (ID-TIMS) baddeleyite ages and geochemistry on mafic sills intruding the Witwatersrand Supergroup, and we interpret these sills as feeders to the overlying Klipriviersberg Group flood basalts. This constrains the age of the Witwatersrand Supergroup and gold mineralization to at least ca. 2.79 Ga. We also report 2729 ± 5 Ma and 2724 ± 7 Ma U-Pb ID-TIMS baddeleyite ages and geochemistry from a mafic sill intruding the Pongola Supergroup and on an east-northeast–trending mafic dike, respectively. These new ages distinguish two of the Ventersdorp Supergroup magmatic events: the Klipriviersberg and Platberg. The Ventersdorp Supergroup can now be shown to initiate and terminate with two large igneous provinces (LIPs), the Klipriviersberg and Allanridge, which are separated by Platberg volcanism and sedimentation. The age of the Klipriviersberg LIP is 2791–2779 Ma, and Platberg volcanism occurred at 2754– 2709 Ma. The Allanridge LIP occurred between 2709–2683 Ma. Klipriviersberg, Platberg, and Allanridge magmatism may be genetically related to mantle plume(s). Higher heat flow and crustal melting resulted as a mantle plume impinged below the Kaapvaal Craton lithosphere, and this was associated with rifting and the formation of LIPs
    corecore