169 research outputs found

    Operations and control of unmanned underwater vehicles

    Get PDF
    Operations and control of unmanned underwater vehicle systems arediscussed in terms of systems and technologies, vehicles, operational deploymentsand concepts of operation. The notions underlying the specification of single vehicleoperations are contrasted to new concepts of operation to illustrate the challengesthey pose to control engineering. New research directions are discussed in thecontext of the theories and techniques from dynamic optimization and computerscience. The overall discussion is done in the context of the activities of theUnderwater Systems and Technology Laboratory from Porto University

    Cymoxanil inhibits respiration through inhibition of mitochondrial complex IV

    Get PDF
    Cymoxanil is a synthetic acetamide fungicide, used against oomycetes. It was first introduced in 1977 and can be used against downy mildew diseases induced by Plasmopara viticola in grapevine cultures and late blight diseases caused by Phytophthora infestans, in tomatoes and potatoes cultures. This fungicide is used in mixed formulations and its higher solubility enables a relatively widespread occurrence in toxic concentrations in aquatic environments. Although it has been used over the years, its biochemical mode of action is not yet known. Some studies reported that cymoxanil affects growth, respiration, DNA, RNA and protein synthesis and RNA polymerase activity of Phytophthora infestans, and it was reported to inhibit cell growth and biomass production and decrease the respiration rate of S. cerevisiae. Using yeast S. cerevisiae as model, we further characterized its effect on mitochondria. We found that whole cells treated with cymoxanil present a higher inhibition of oxygen consumption after 3 h of treatment that remains over time. Using isolated mitochondria, we observe that cymoxanil inhibits respiratory rate of yeast cells by inhibiting oxidative phosphorylation, through inhibition of complex IV activity. Although other targets cannot be excluded, our data provide new information about mode of action of cymoxanil that can be instrumental to drive informed management regarding the use of this fungicide.info:eu-repo/semantics/publishedVersio

    Oral Angiotensin-(1–7) prevented obesity and hepatic inflammation by inhibition of resistin/TLR4/MAPK/NF-κB in rats fed with high-fat diet

    Get PDF
    AbstractObesity is characterized by a pro-inflammatory state commonly associated with type 2 diabetes and fat-liver disease. In the last few years, different studies pointed out the role of Angiotensin (Ang)-(1–7) in the metabolic regulation. The aim of the present study was to evaluate the effect of oral-administration of Ang-(1–7) in metabolism and inflammatory state of high-fat feed rats. Twenty-four male Sprague Dawley rats were randomized into three groups: High Fat Diet (HFD); Standard Diet (ST); High Fat Diet+Angiotensin-(1–7) [HFD+Ang-(1–7)]. Glycemic profile was evaluated by glucose tolerance and insulin sensitivity tests, plasmatic glucose and insulin. Cholesterol, HDL and triglycerides analyses presented lipidic profile. RT-PCR evaluated mRNA expression to ACE, ACE2, resistin, TLR4, IL-6, TNF-α and NF-κB genes. The main results showed that oral Ang-(1–7) decreased body weight and abdominal fat-mass. In addition, HFD+Ang-(1–7) treated rats presented enhanced glucose tolerance, insulin-sensitivity and decreased plasma-insulin levels, as well as a significant decrease in circulating lipid levels. These alterations were accompanied by a marked decreased expression of resistin, TLR4, ACE and increased ACE2 expression in liver. Furthermore, Ang-(1–7) decreases phosphorylation of MAPK and increases NF-κB expression. These alterations diminished expression of interleukin-6 and TNF-α, ameliorate inflammatory state in liver. In summary, the present study showed that oral-treatment with Ang-(1–7) in high-fat feed rats improved metabolism down-regulating resistin/TLR4/NF-κB-pathway

    Implementation of a circular bioeconomy: obtaining cellulose fibers derived from portuguese vine pruning residues for heritage conservation, oxidized with TEMPO and ultrasonic treatment

    Get PDF
    Inspired by the principles of the circular economy, using vineyard pruning residues as a source of raw materials for producing nanocellulose is a promising approach to transforming vineyard resources into value-added products. This study aimed to obtain and characterize cellulose and cellulose nanofibers from such sources. The cellulose collected from different fractions of micronized stems (500, 300, 150 μm, and retain) of vines was submitted to autohydrolysis and finally bleached. Soon, it underwent treatment via (2,2,6,6-tetrametil-piperidi-1-nil)oxil (TEMPO) oxidation and ultrasonic to obtain nanocellulose fibers. The cellulose films were obtained at a microscale thickness of 0.05 ± 0.00; 0.37 ± 0.03; 0.06 ± 0.01 e 0.030 ± 0.01 mm, with the following particle size: 500 µm, 300 µm, 150 µm, and retain (<150 µm). The bleaching efficiency of the cellulose fibers of each particle size fraction was evaluated for color through a colorimeter. In addition, the extraction of cellulose fibers was assessed by infrared with Fourier transform, and size and shape were assessed by microscopy. Differential scanning calorimetry and X-ray diffraction were performed to confirm the thermal and crystalline properties. Combining autohydrolysis with a bleaching step proved to be a promising and ecological alternative to obtain white fractions rich in cellulose. It was possible to perform the extraction of cellulose to obtain nanocellulose fibers from vine pruning residues for the development of coatings for the conservation of heritage buildings from environmental conditions through an environmentally friendly process.info:eu-repo/semantics/publishedVersio

    Tetra-amelia and lung hypo/aplasia syndrome: New case report and review

    Get PDF
    Tetra-amelia is a rare malformation that may be associated with other anomalies and is usually inherited in an autosomal recessive pattern. We describe a fetus, born to a nonconsanguineous couple, with tetra-amelia, bilateral cleft lip and palate and bilateral lung agenesis, without other anomalies. Karyotype was normal (46,XX) and premature centromere separation was excluded. No mutation was identified upon molecular analysis of WNT3, HS6ST1, and HS6ST3. We reviewed the literature and the differential diagnosis to clarify the clinical delineation of conditions associated with tetra-amelia. The present report describes the sixth family with this pattern of malformations and reinforces the evidence that the ldquotetra-amelia and lung hypo/aplasia syndromerdquo is a distinct autosomal recessive condition, with no identified gene thus far. © 2008 Wiley-Liss, Inc

    Liposomal formulations loaded with a eugenol derivative for application as insecticides: encapsulation studies and In silico identification of protein targets

    Get PDF
    Supplementary Materials can be downloaded at: https://www.mdpi.com/article/10.3390/nano12203583/s1,A recently synthesized new eugenol derivative, ethyl 4-(2-methoxy-4-(oxiran-2-ylmethyl)phenoxy)butanoate, with a high insecticidal activity against Sf9 (Spodoptera frugiperda) insect cells, was encapsulated in the liposomal formulations of egg-phosphatidylcholine/cholesterol (Egg-PC:Ch) 70:30 and 100% dioleoylphosphatidylglycerol (DOPG), aiming at the future application as insecticides. Compound-loaded DOPG liposomes have sizes of 274 ± 12 nm, while Egg-PC:Ch liposomes exhibit smaller hydrodynamic diameters (69.5 ± 7 nm), high encapsulation efficiency (88.8% ± 2.7%), higher stability, and a more efficient compound release, thus, they were chosen for assays in Sf9 insect cells. The compound elicited a loss of cell viability up to 80% after 72 h of incubation. Relevantly, nanoencapsulation maintained the toxicity of the compound toward insect cells while lowering the toxicity toward human cells, thus showing the selectivity of the system. Structure-based inverted virtual screening was used to predict the most likely targets and molecular dynamics simulations and free energy calculations were used to demonstrate that this molecule can form a stable complex with insect odorant binding proteins and/or acetylcholinesterase. The results are promising for the future application of compound-loaded nanoliposome formulations as crop insecticides.This research was funded by project PTDC/ASP-AGR/30154/2017 (POCI-01-0145-FEDER 030154) of the COMPETE2020 program, co-financed by the FEDER and the European Union. The authors also acknowledge the Foundation for Science and Technology (FCT, Portugal) and FEDERCOMPETE QREN-EU for financial support to the research centers CQUM (UID/QUI/00686/2021), CF-UM-UP (UIDB/04650/2020) and REQUIMTE (UIDB/50006/2020). Renato B. Pereira acknowledges PRIMA Foundation (H2020-PRIMA 2018—Section 2, Project MILKQUA) and FCT (PTDC/QUI-QFI/2870/2020) for additional funding. The NMR spectrometer Bruker Avance III 400 is part of the National NMR Network and was purchased within the framework of the National Program for Scientific Re-equipment, contract REDE/1517/RMN/2005, with funds from POCI 2010 (FEDER) and FCT

    Production and quality of mini watermelon cv. Smile irrigated with saline water

    Get PDF
    A B S T R A C T The purpose of this study was to evaluate the salt tolerance of mini watermelon (cv. Smile). ). Aos 85 dias após o início do experimento avaliaram-se as plantas e as variáveis físico-químicas dos frutos. A salinidade afetou negativamente as variáveis comprimento do ramo principal, diâmetro do caule, número de folhas, número de ramos secundários, área foliar, massa fresca e massa seca. Para as variáveis físico-químicas dos frutos a salinidade reduziu a massa fresca, o diâmetro e o pH do fruto e elevou o teor de vitamina C. Com os resultados obtidos infere-se que a minimelancia cv. Smile é moderadamente sensível à salinidade

    Synthesis, computational and nanoencapsulation studies on eugenol-derived insecticides

    Get PDF
    A new set of alkoxy alcohols were synthesised by reaction of eugenol oxirane with aliphatic and aromatic alcohols. These eugenol derivatives were evaluated against their effect upon the viability of the insect cell line Sf9 (Spodoptera frugiperda). The most promising compounds, 4-(3-(tert-butoxy)-2-hydroxypropyl)-2-methoxyphenol and 4-(2-((4-fluorobenzyl)oxy)-3-hydroxypropyl)-2-methoxyphenol were submitted to in silico assays to predict possible targets. Throught an Inverted Virtual Screening approach, 23 common pesticide targets were screened and the top 2 targets predicted were further analyzed through molecular dynamics simulations and free energy calculations. In addition, these eugenol derivatives were subjected to encapsulation and release assays using liposome-based nanosystems of egg phosphatidylcholine/cholesterol (7:3), with encapsulation efficiencies higher than 90% and release profiles well described by both Korsmeyer-Peppas and Weibull models.This research was funded by the project PTDC/ASP-AGR/30154/2017 (POCI-01-0145-FEDER-030154) of the COMPETE 2020 program, co-financed by the FEDER and the European Union. The authors also acknowledge the Foundation for Science and Technology (FCT, Portugal) and FEDERCOMPETE-QREN-EU for financial support to the research centers CQ-UM (UID/QUI/00686/2021), CF-UM-UP (UIDB/04650/2021) and REQUIMTE (UIDB/50006/2020). Renato B. Pereira acknowledges the PRIMA Foundation (H2020-PRIMA 2018-Section 2, Project MILKQUA) and FCT (PTDC/QUI-QFI/2870/2020) for the funding. The NMR spectrometer Bruker Avance III 400 was a part of the National NMR Network and was purchased within the framework of the National Program for Scientific Re-equipment, contract REDE/1517/RMN/2005 with funds from POCI 2010 (FEDER) and FCT

    Review of low-cost sensors for indoor air quality: Features and applications

    Get PDF
    Humans spend the majority of their time indoors, where they are potentially exposed to hazardous pollutants. Within this context, over the past few years, there has been an upsurge of low-cost sensors (LCS) for the measurement of indoor air pollutants, motivated both by recent technological advances and by increased awareness of indoor air quality (IAQ) and its potential negative health impacts. Although not meeting the performance requirements for reference regulatory-equivalent monitoring indoors, LCS can provide informative measurements, offering an opportunity for high-resolution monitoring, emission source identification, exposure mitigation and managing IAQ and energy efficiency, among others. This article discusses the strengths and limitations that LCS offer for applications in the field of IAQ monitoring; it provides an overview of existing sensor technologies and gives recommendations for different indoor applications, considering their performance in the complex indoor environment and discussing future trends
    corecore