144 research outputs found

    Apport des nouvelles gĂ©nĂ©rations de sĂ©quençage pour accĂ©der Ă  la diversitĂ© des communautĂ©s microbiennes du sol : nĂ©cessitĂ© d’un ‘pipeline’ bio-informatique pour les biologistes

    Get PDF
    Communication orale, rĂ©sumĂ©La diversitĂ© microbienne d’un sol est difficile Ă  caractĂ©riser. Ceci s’explique par une accessibilitĂ© plus ou moins importante des populations au sein d’une matrice hĂ©tĂ©rogĂšne et structurĂ©e, mais aussi par l’incapacitĂ© Ă  rĂ©soudre une information constituĂ©e de 100 000 Ă  1 000 000 d’espĂšces diffĂ©rentes par gramme de sol. Toutefois, rĂ©cemment, d’importantes avancĂ©es en biologie molĂ©culaire ont permis de mieux caractĂ©riser la diversitĂ© des communautĂ©s microbiennes du sol in situ et ce sans a priori. Ainsi, la puissance des nouvelles gĂ©nĂ©rations de sĂ©quençage comme le pyrosĂ©quençage permettent de travailler en haut-dĂ©bit afin d’obtenir plusieurs dizaines, voire plusieurs centaines de milliers de sĂ©quences Ă  partir d’un ADN mĂ©ta-gĂ©nomique. De premiĂšres Ă©tudes ont dĂ©jĂ  Ă©tĂ© rĂ©alisĂ©es avec cette technique afin d’aborder la diversitĂ© bactĂ©rienne des sols. Ces Ă©tudes ont, pour la premiĂšre fois, permis de quantifier de façon exhaustive la diversitĂ© microbienne de sols en termes de richesse spĂ©cifique et de dĂ©montrer la pertinence, la faisabilitĂ© et la robustesse de cette approche. Cette approche est maintenant unanimement reconnue pour sa pertinence et ses potentialitĂ©s trĂšs importantes, et ce afin de dĂ©terminer la diversitĂ© des microorganismes telluriques. Notre approche consiste en la caractĂ©risation de la diversitĂ© taxonomique (bactĂ©rienne et fongique) de sols sur des Ă©chantillonnages de grande ampleur dans le temps et dans l’espace, avec comme objectifs : (i) de faire un inventaire exhaustif de la diversitĂ© microbienne tellurique, (ii) d’évaluer sa distribution spatiale, (iii) de mieux comprendre sa rĂ©gulation et, (iv) in fine, de pouvoir relier cette diversitĂ© en fonctionnement biologique du sol et en services Ă©cosystĂ©miques [1-3]. Cependant, l’étude d’un aussi grand nombre d’échantillons va entraĂźner la production massive de sĂ©quences. Ce caractĂšre massif, ainsi que les caractĂ©ristiques inhĂ©rentes aux sĂ©quences obtenues par cette technique requiĂšrent le dĂ©veloppement d’outils bioinformatiques adaptĂ©s, optimisĂ©s et Ă©valuĂ©s, afin d’analyser rapidement et efficacement ce type de donnĂ©es. Ce nouveau pipeline d’analyse doit tout d’abord ĂȘtre facile d’utilisation et rĂ©pondre aux attentes des diffĂ©rents utilisateurs, qu’ils soient compĂ©tents en bio-informatique, ou novices dans l’analyse de tels jeux de donnĂ©es. Il doit Ă©galement permettre de gĂ©rer un grand nombre de sĂ©quences et d’automatiser les grandes Ă©tapes d’analyse (prĂ©traitement, filtration, clustĂ©risation, assignation taxonomique, calculs d’indices d’abondance et de diversitĂ©, taux de couverture,
). L’ensemble du systĂšme devra enfin ĂȘtre transfĂ©rĂ© sur un serveur de calcul et accessible au travers d’un serveur Web pour ĂȘtre accessible Ă  la collectivitĂ© des Ă©cologistes microbiens. L’objectif Ă©tant de coupler, sur un grand nombre d’échantillons, cette approche avec des mesures d’activitĂ©s et de faire le lien entre la diversitĂ© microbienne et l’aptitude des sols Ă  rendre des services

    Identification of transcriptional signals in Encephalitozoon cuniculi widespread among Microsporidia phylum: support for accurate structural genome annotation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microsporidia are obligate intracellular eukaryotic parasites with genomes ranging in size from 2.3 Mbp to more than 20 Mbp. The extremely small (2.9 Mbp) and highly compact (~1 gene/kb) genome of the human parasite <it>Encephalitozoon cuniculi </it>has been fully sequenced. The aim of this study was to characterize noncoding motifs that could be involved in regulation of gene expression in <it>E. cuniculi </it>and to show whether these motifs are conserved among the phylum Microsporidia.</p> <p>Results</p> <p>To identify such signals, 5' and 3'RACE-PCR experiments were performed on different E. cuniculi mRNAs. This analysis confirmed that transcription overrun occurs in E. cuniculi and may result from stochastic recognition of the AAUAAA polyadenylation signal. Such experiments also showed highly reduced 5'UTR's (<7 nts). Most of the <it>E. cuniculi </it>genes presented a CCC-like motif immediately upstream from the coding start. To characterize other signals involved in differential transcriptional regulation, we then focused our attention on the gene family coding for ribosomal proteins. An AAATTT-like signal was identified upstream from the CCC-like motif. In rare cases the cytosine triplet was shown to be substituted by a GGG-like motif. Comparative genomic studies confirmed that these different signals are also located upstream from genes encoding ribosomal proteins in other microsporidian species including <it>Antonospora locustae</it>, <it>Enterocytozoon bieneusi</it>, <it>Anncaliia algerae </it>(syn. <it>Brachiola algerae</it>) and <it>Nosema ceranae</it>. Based on these results a systematic analysis of the ~2000 E. cuniculi coding DNA sequences was then performed and brings to highlight that 364 translation initiation codons (18.29% of total CDSs) had been badly predicted.</p> <p>Conclusion</p> <p>We identified various signals involved in the maturation of E. cuniculi mRNAs. Presence of such signals, in phylogenetically distant microsporidian species, suggests that a common regulatory mechanism exists among the microsporidia. Furthermore, 5'UTRs being strongly reduced, these signals can be used to ensure the accurate prediction of translation initiation codons for microsporidian genes and to improve microsporidian genome annotation.</p

    Detecting variants with Metabolic Design, a new software tool to design probes for explorative functional DNA microarray development

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microorganisms display vast diversity, and each one has its own set of genes, cell components and metabolic reactions. To assess their huge unexploited metabolic potential in different ecosystems, we need high throughput tools, such as functional microarrays, that allow the simultaneous analysis of thousands of genes. However, most classical functional microarrays use specific probes that monitor only known sequences, and so fail to cover the full microbial gene diversity present in complex environments. We have thus developed an algorithm, implemented in the user-friendly program Metabolic Design, to design efficient explorative probes.</p> <p>Results</p> <p>First we have validated our approach by studying eight enzymes involved in the degradation of polycyclic aromatic hydrocarbons from the model strain <it>Sphingomonas paucimobilis </it>sp. EPA505 using a designed microarray of 8,048 probes. As expected, microarray assays identified the targeted set of genes induced during biodegradation kinetics experiments with various pollutants. We have then confirmed the identity of these new genes by sequencing, and corroborated the quantitative discrimination of our microarray by quantitative real-time PCR. Finally, we have assessed metabolic capacities of microbial communities in soil contaminated with aromatic hydrocarbons. Results show that our probe design (sensitivity and explorative quality) can be used to study a complex environment efficiently.</p> <p>Conclusions</p> <p>We successfully use our microarray to detect gene expression encoding enzymes involved in polycyclic aromatic hydrocarbon degradation for the model strain. In addition, DNA microarray experiments performed on soil polluted by organic pollutants without prior sequence assumptions demonstrate high specificity and sensitivity for gene detection. Metabolic Design is thus a powerful, efficient tool that can be used to design explorative probes and monitor metabolic pathways in complex environments, and it may also be used to study any group of genes. The Metabolic Design software is freely available from the authors and can be downloaded and modified under general public license.</p

    Recruitment of Glycosyl Hydrolase Proteins in a Cone Snail Venomous Arsenal: Further Insights into Biomolecular Features of Conus Venoms

    Get PDF
    Cone snail venoms are considered an untapped reservoir of extremely diverse peptides, named conopeptides, displaying a wide array of pharmacological activities. We report here for the first time, the presence of high molecular weight compounds that participate in the envenomation cocktail used by these marine snails. Using a combination of proteomic and transcriptomic approaches, we identified glycosyl hydrolase proteins, of the hyaluronidase type (Hyal), from the dissected and injectable venoms (“injectable venom” stands for the venom variety obtained by milking of the snails. This is in contrast to the “dissected venom”, which was obtained from dissected snails by extraction of the venom glands) of a fish-hunting cone snail, Conus consors (Pionoconus clade). The major Hyal isoform, Conohyal-Cn1, is expressed as a mixture of numerous glycosylated proteins in the 50 kDa molecular mass range, as observed in 2D gel and mass spectrometry analyses. Further proteomic analysis and venom duct mRNA sequencing allowed full sequence determination. Additionally, unambiguous segment location of at least three glycosylation sites could be determined, with glycans corresponding to multiple hexose (Hex) and N-acetylhexosamine (HexNAc) moieties. With respect to other known Hyals, Conohyal-Cn1 clearly belongs to the hydrolase-type of Hyals, with strictly conserved consensus catalytic donor and positioning residues. Potent biological activity of the native Conohyals could be confirmed in degrading hyaluronic acid. A similar Hyal sequence was also found in the venom duct transcriptome of C. adamsonii (Textilia clade), implying a possible widespread recruitment of this enzyme family in fish-hunting cone snail venoms. These results provide the first detailed Hyal sequence characterized from a cone snail venom, and to a larger extent in the Mollusca phylum, thus extending our knowledge on this protein family and its evolutionary selection in marine snail venoms

    New design of probes for functional DNA microarrays and characterization of the biodegradation capacities of bacterial communities in hydrocarbon polluted soils

    No full text
    Les activitĂ©s humaines sont Ă  l’origine de nombreuses pollutions par des hydrocarbures au niveau des Ă©cosystĂšmes, et plus particuliĂšrement au niveau des sols. Afin de prĂ©server la santĂ© humaine et environnementale, il est nĂ©cessaire d’éliminer les polluants prĂ©sents. Dans ce but, les techniques de bioremĂ©diation apparaissent aujourd’hui comme de rĂ©elles alternatives aux techniques classiques, invasives et onĂ©reuses. Cependant, l’utilisation optimale de tels procĂ©dĂ©s nĂ©cessite une meilleure connaissance des capacitĂ©s mĂ©taboliques des communautĂ©s microbiennes impliquĂ©es dans la biodĂ©gradation de ces polluants. Dans ce cadre, l’utilisation des biopuces ADN fonctionnelles pour analyser ces Ă©cosystĂšmes semble trĂšs appropriĂ©e.Cependant, une de ses limitations actuelles est la dĂ©termination des sondes, qui ne ciblent que les gĂšnes dont les sĂ©quences ont Ă©tĂ© caractĂ©risĂ©es. Pour cela, un outil informatique (Metabolic Design) a Ă©tĂ© mis au point, afin de dĂ©terminer des sondes exploratoires pour biopuces fonctionnelles. L’étude, avec notre biopuce fonctionnelle, des capacitĂ©s mĂ©taboliques de dĂ©gradation des HAP de la souche Sphingomonas paucimobilis sp. EPA505 a permis de mettre en Ă©vidence la sensibilitĂ© et la spĂ©cificitĂ© des sondes dĂ©veloppĂ©es, ainsi que leur aspect exploratoire. Puis, nous nous sommes attachĂ©s Ă  caractĂ©riser les capacitĂ©s mĂ©taboliques des communautĂ©s bactĂ©riennes d’un sol polluĂ© principalement par des HAP, sans Ă  priori sur les sĂ©quences ou les organismes prĂ©sents, montrant l’efficacitĂ© de notre approche.Soil ecosystems are sensitive to damage from pollutions, and there is an increasing need to develop better methods for removing pollutants from soils. The removal of pollutants, such as polycyclic aromatic hydrocarbons, by bioremediation, is a less invasive and expensive process than classical decontamination. However, use and optimization of bioremediation treatments require knowledge on metabolic capacites of microbial communities involved in the biodegradation of such pollutants. To assess their huge metabolic potentialities, we need high throughput tools, such as functional microarrays, that allow the simultaneous analysis of thousands of genes. However, most classical functional microarrays use specific probes that monitor only known sequences and so, fail to cover the full microbial gene diversity present in complex environments. We have thus developed a program, named Metabolic Design, to design efficient explorative probes for functional microarrays. Then, we successfully validated our new functional microarray studying metabolic capacities of Sphnigomonas paucimobilis sp. EPA505 able to degrade polycyclic aromatic hydrocarbons. Finally, we assessed metabolic capacities of microbial communities in soil, contaminated with aromatic hydrocarbons. Results show that our probe design (sensitivity and explorative quality) can be used to study a complex environment efficiently

    Nouveau design de sondes pour biopuces ADN fonctionnelles et caractérisation des capacités de biodégradation des communautés bactériennes de sols pollués par des hydrocarbures

    Get PDF
    Soil ecosystems are sensitive to damage from pollutions, and there is an increasing need to develop better methods for removing pollutants from soils. The removal of pollutants, such as polycyclic aromatic hydrocarbons, by bioremediation, is a less invasive and expensive process than classical decontamination. However, use and optimization of bioremediation treatments require knowledge on metabolic capacites of microbial communities involved in the biodegradation of such pollutants. To assess their huge metabolic potentialities, we need high throughput tools, such as functional microarrays, that allow the simultaneous analysis of thousands of genes. However, most classical functional microarrays use specific probes that monitor only known sequences and so, fail to cover the full microbial gene diversity present in complex environments. We have thus developed a program, named Metabolic Design, to design efficient explorative probes for functional microarrays. Then, we successfully validated our new functional microarray studying metabolic capacities of Sphnigomonas paucimobilis sp. EPA505 able to degrade polycyclic aromatic hydrocarbons. Finally, we assessed metabolic capacities of microbial communities in soil, contaminated with aromatic hydrocarbons. Results show that our probe design (sensitivity and explorative quality) can be used to study a complex environment efficiently.Les activitĂ©s humaines sont Ă  l’origine de nombreuses pollutions par des hydrocarbures au niveau des Ă©cosystĂšmes, et plus particuliĂšrement au niveau des sols. Afin de prĂ©server la santĂ© humaine et environnementale, il est nĂ©cessaire d’éliminer les polluants prĂ©sents. Dans ce but, les techniques de bioremĂ©diation apparaissent aujourd’hui comme de rĂ©elles alternatives aux techniques classiques, invasives et onĂ©reuses. Cependant, l’utilisation optimale de tels procĂ©dĂ©s nĂ©cessite une meilleure connaissance des capacitĂ©s mĂ©taboliques des communautĂ©s microbiennes impliquĂ©es dans la biodĂ©gradation de ces polluants. Dans ce cadre, l’utilisation des biopuces ADN fonctionnelles pour analyser ces Ă©cosystĂšmes semble trĂšs appropriĂ©e.Cependant, une de ses limitations actuelles est la dĂ©termination des sondes, qui ne ciblent que les gĂšnes dont les sĂ©quences ont Ă©tĂ© caractĂ©risĂ©es. Pour cela, un outil informatique (Metabolic Design) a Ă©tĂ© mis au point, afin de dĂ©terminer des sondes exploratoires pour biopuces fonctionnelles. L’étude, avec notre biopuce fonctionnelle, des capacitĂ©s mĂ©taboliques de dĂ©gradation des HAP de la souche Sphingomonas paucimobilis sp. EPA505 a permis de mettre en Ă©vidence la sensibilitĂ© et la spĂ©cificitĂ© des sondes dĂ©veloppĂ©es, ainsi que leur aspect exploratoire. Puis, nous nous sommes attachĂ©s Ă  caractĂ©riser les capacitĂ©s mĂ©taboliques des communautĂ©s bactĂ©riennes d’un sol polluĂ© principalement par des HAP, sans Ă  priori sur les sĂ©quences ou les organismes prĂ©sents, montrant l’efficacitĂ© de notre approche

    Nouveau design de sondes pour biopuces ADN fonctionnelles et caractérisation des capacités de biodégradation des communautés bactériennes de sols pollués par des hydrocarbures

    No full text
    Les activités humaines sont à l origine de nombreuses pollutions par des hydrocarbures au niveau des écosystÚmes, et plus particuliÚrement au niveau des sols. Afin de préserver la santé humaine et environnementale, il est nécessaire d éliminer les polluants présents. Dans ce but, les techniques de bioremédiation apparaissent aujourd hui comme de réelles alternatives aux techniques classiques, invasives et onéreuses. Cependant, l utilisation optimale de tels procédés nécessite une meilleure connaissance des capacités métaboliques des communautés microbiennes impliquées dans la biodégradation de ces polluants. Dans ce cadre, l utilisation des biopuces ADN fonctionnelles pour analyser ces écosystÚmes semble trÚs appropriée.Cependant, une de ses limitations actuelles est la détermination des sondes, qui ne ciblent que les gÚnes dont les séquences ont été caractérisées. Pour cela, un outil informatique (Metabolic Design) a été mis au point, afin de déterminer des sondes exploratoires pour biopuces fonctionnelles. L étude, avec notre biopuce fonctionnelle, des capacités métaboliques de dégradation des HAP de la souche Sphingomonas paucimobilis sp. EPA505 a permis de mettre en évidence la sensibilité et la spécificité des sondes développées, ainsi que leur aspect exploratoire. Puis, nous nous sommes attachés à caractériser les capacités métaboliques des communautés bactériennes d un sol pollué principalement par des HAP, sans à priori sur les séquences ou les organismes présents, montrant l efficacité de notre approche.Soil ecosystems are sensitive to damage from pollutions, and there is an increasing need to develop better methods for removing pollutants from soils. The removal of pollutants, such as polycyclic aromatic hydrocarbons, by bioremediation, is a less invasive and expensive process than classical decontamination. However, use and optimization of bioremediation treatments require knowledge on metabolic capacites of microbial communities involved in the biodegradation of such pollutants. To assess their huge metabolic potentialities, we need high throughput tools, such as functional microarrays, that allow the simultaneous analysis of thousands of genes. However, most classical functional microarrays use specific probes that monitor only known sequences and so, fail to cover the full microbial gene diversity present in complex environments. We have thus developed a program, named Metabolic Design, to design efficient explorative probes for functional microarrays. Then, we successfully validated our new functional microarray studying metabolic capacities of Sphnigomonas paucimobilis sp. EPA505 able to degrade polycyclic aromatic hydrocarbons. Finally, we assessed metabolic capacities of microbial communities in soil, contaminated with aromatic hydrocarbons. Results show that our probe design (sensitivity and explorative quality) can be used to study a complex environment efficiently.CLERMONT FD-Bib.électronique (631139902) / SudocSudocFranceF

    Assessing microbial biogeography by using a metagenomic approach

    No full text
    EABIOmEIPMUBINRASoils are highly complex ecosystems and are considered as one of the Earth’s main reservoirs of biological diversity. Bacteria account for a major part of this biodiversity, and it is now clear that such microorganisms have a key role in soil functioning processes. However, environmental factors regulating the diversity of below-ground bacteria still need to be investigated, which limits our understanding of the distribution of such bacteria at various spatial scales. The overall objectives of this study were: (i) to determine the spatial patterning of bacterial community diversity in soils at a broad scale, and (ii) to rank the environmental filters most influencing this distribution. This study was performed at the scale of the France by using the French Soil Quality Monitoring Network. This network includes more than 2,200 soil samples along a systematic grid sampling. For each soil, bacterial diversity was characterized using a pyrosequencing approach targeting the 16S rRNA genes directly amplified from soil DNA, obtaining more than 18 million of high-quality sequences. This study provides the first estimates of microbial diversity at the scale of France, with for example, bacterial richness ranging from 555 to 2,007 OTUs (on average: 1,289 OTUs). It also provides the first extensive map of bacterial diversity, as well as of major bacterial taxa, revealing a bacterial heterogeneous and spatially structured distribution at the scale of France. The main factors driving bacterial community distribution are the soil physico-chemical properties (pH, texture...) and land use (forest, grassland, crop system...), evidencing that bacterial spatial distribution at a broad scale depends on local filters such as soil characteristics and land use when regarding the community (quality, composition) as a whole. Moreover, this study also offers a better evaluation of the impact of land uses on soil microbial diversity and taxa, with consequences in terms of sustainability for agricultural systems

    Nouvelles techniques de méta-omiques pour le diagnostic de la qualité microbiologique des sols

    No full text
    National audienceLes nouvelles techniques de mĂ©ta-omiques ont bouleversĂ© le domaine de l’écologie microbienne, notamment grĂące Ă  l’apport des nouvelles techniques de sĂ©quençage Ă  haut dĂ©bit. Cette rĂ©volution a aussi Ă©tĂ© bĂ©nĂ©fique en proposant des outils afin de mesurer et de rĂ©aliser des diagnostics de la qualitĂ© microbiologique des sols. Quels sont les bio-indicateurs utilisĂ©s ? Comment sont-ils Ă©tudiĂ©s et appliquĂ©s Ă  grande Ă©chelle ? Dans cet article, seront prĂ©sentĂ©es les diffĂ©rentes techniques de mĂ©ta-omiques illustrĂ©es par des exemples validĂ©s ou en cours de validation ainsi que les dĂ©veloppements futurs afin de rĂ©pondre Ă  l’enjeu essentiel d’une meilleure comprĂ©hension et prĂ©servation des sols.Abstact: New meta-omics techniques for diagnosis of soil microbial quality.The new meta-omics techniques have upset the field of microbial ecology, particularly due to the contribution of the new high-throughput sequencing technologies. This revolution has benefited from fundamental research point of view but also by giving access to tools dedicated to new measurements and to carry out soil microbial quality diagnosis. What are the bio-indicators used? How are they studied and applied on a large scale? This article will be focused on the different meta-omic techniques illustrated by valid or undergoing validation examples, as well as future developments in order to answer the essential challenge of a better understanding and preservation of the soil
    • 

    corecore