428 research outputs found

    High Resolution 3D Shape Texture from Multiple Videos

    Get PDF
    International audienceWe examine the problem of retrieving high resolution textures of objects observed in multiple videos under small object deformations. In the monocular case, the data redundancy necessary to reconstruct a high-resolution image stems from temporal accumulation. This has been vastly explored and is known as super-resolution. On the other hand, a handful of methods have considered the texture of a static 3D object observed from several cameras, where the data redundancy is obtained through the different viewpoints. We introduce a unified framework to leverage both possibilities for the estimation of a high resolution texture of an object. This framework uniformly deals with any related geometric variability introduced by the acquisition chain or by the evolution over time. To this goal we use 2D warps for all viewpoints and all temporal frames and a linear projection model from texture to image space. Despite its simplicity, the method is able to successfully handle different views over space and time. As shown experimentally, it demonstrates the interest of temporal information that improves the texture quality. Additionally, we also show that our method outperforms state of the art multi-view super-resolution methods that exist for the static case

    3D Shape Cropping

    Get PDF
    International audienceWe introduce shape cropping as the segmentation of a bounding geometry of an object as observed by sensors with different modalities. Segmenting a bounding volume is a preliminary step in many multi-view vision applications that consider or require the recovery of 3D information, in particular in multi-camera environments. Recent vision systems used to acquire such information often combine sensors of different types, usually color and depth sensors. Given depth and color images we present an efficient geometric algorithm to compute a polyhedral bounding sur- face that delimits the region in space where the object lies. The resulting cropped geometry eliminates unwanted space regions and enables the initialization of further processes including surface refinements. Our approach ex- ploits the fact that such a region can be defined as the intersection of 3D regions identified as non empty in color or depth images. To this purpose, we propose a novel polyhedron combination algorithm that overcomes compu- tational and robustness issues exhibited by traditional intersection tools in our context. We show the correction and effectiveness of the approach on various combination of inputs

    Étude des méthodes de saisie informatique relatives au forage de données appliquées à la prise de décision en urbanisme

    Get PDF
    Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal

    HYR2PICS: Hybrid Regularized Reconstruction for combined Parallel Imaging and Compressive Sensing in MRI

    Get PDF
    International audienceBoth parallel Magnetic Resonance Imaging~(pMRI) and Compressed Sensing (CS) are emerging techniques to accelerate conventional MRI by reducing the number of acquired data in the kk-space. So far, first attempts to combine sensitivity encoding (SENSE) imaging in pMRI with CS have been proposed in the context of Cartesian trajectories. Here, we extend these approaches to non-Cartesian trajectories by jointly formulating the CS and SENSE recovery in a hybrid Fourier/wavelet framework and optimizing a convex but nonsmooth criterion. On anatomical MRI data, we show that HYR2^2PICS outperforms wavelet-based regularized SENSE reconstruction. Our results are also in agreement with the Transform Point Spread Function (TPSF) criterion that measures the degree of incoherence of kk-space undersampling schemes

    Cotemporal Multi-View Video Segmentation

    Get PDF
    International audienceWe address the problem of multi-view video segmentation of dynamic scenes in general and outdoor environments with possibly moving cameras. Multi-view methods for dynamic scenes usually rely on geometric calibration to impose spatial shape constraints between viewpoints. In this paper, we show that the calibration constraint can be relaxed while still getting competitive segmentation results using multi-view constraints. We introduce new multi-view cotemporality constraints through motion correlation cues, in addition to common appearance features used by co-segmentation methods to identify co-instances of objects. We also take advantage of learning based segmentation strategies by casting the problem as the selection of monocular proposals that satisfy multi-view constraints. This yields a fully automated method that can segment subjects of interest without any particular pre-processing stage. Results on several challenging outdoor datasets demonstrate the feasibility and robustness of our approach

    Shape Animation with Combined Captured and Simulated Dynamics

    No full text
    We present a novel volumetric animation generation framework to create new types of animations from raw 3D surface or point cloud sequence of captured real performances. The framework considers as input time incoherent 3D observations of a moving shape, and is thus particularly suitable for the output of performance capture platforms. In our system, a suitable virtual representation of the actor is built from real captures that allows seamless combination and simulation with virtual external forces and objects, in which the original captured actor can be reshaped, disassembled or reassembled from user-specified virtual physics. Instead of using the dominant surface-based geometric representation of the capture, which is less suitable for volumetric effects, our pipeline exploits Centroidal Voronoi tessellation decompositions as unified volumetric representation of the real captured actor, which we show can be used seamlessly as a building block for all processing stages, from capture and tracking to virtual physic simulation. The representation makes no human specific assumption and can be used to capture and re-simulate the actor with props or other moving scenery elements. We demonstrate the potential of this pipeline for virtual reanimation of a real captured event with various unprecedented volumetric visual effects, such as volumetric distortion, erosion, morphing, gravity pull, or collisions

    Segmentation multi-vues par coupure de graphes

    Get PDF
    National audienceDans cet article, nous abordons le problème de la segmentation simultanée d'images lorsque plusieurs caméras calibrées et synchronisées observent la même scène. Nous proposons une nouvelle approche permettant de propager l'information de segmentation de manière cohérente entre les vues. Pour cela, le problème de segmentation est formulé comme un problème d'étiquetage en deux régions fond et forme des pixels de l'image, résolu avec une méthode de coupe de graphe. Contrairement à de nombreuses approches de l'état de l'art, notre méthode ne nécessite pas de reconstruction 3D dense de l'objet mais plus simplement un échantillonnage éparse de l'espace 3D. Une évaluation complète est effectuée sur des données statiques standard. Les résultats obtenus montrent l'intérêt de la méthode qui obtient des résultats équivalents à ceux de l'état de l'art mais avec beaucoup moins de points de vue

    A network analysis of cofactor-protein interactions for analyzing associations between human nutrition and diseases

    Get PDF
    The involvement of vitamins and other micronutrients in intermediary metabolism was elucidated in the mid 1900's at the level of individual biochemical reactions. Biochemical pathways remain the foundational knowledgebase for understanding how micronutrient adequacy modulates health in all life stages. Current daily recommended intakes were usually established on the basis of the association of a single nutrient to a single, most sensitive adverse effect and thus neglect interdependent and pleiotropic effects of micronutrients on biological systems. Hence, the understanding of the impact of overt or sub-clinical nutrient deficiencies on biological processes remains incomplete. Developing a more complete view of the role of micronutrients and their metabolic products in protein-mediated reactions is of importance. We thus integrated and represented cofactor-protein interaction data from multiple and diverse sources into a multi-layer network representation that links cofactors, cofactor-interacting proteins, biological processes, and diseases. Network representation of this information is a key feature of the present analysis and enables the integration of data from individual biochemical reactions and protein-protein interactions into a systems view, which may guide strategies for targeted nutritional interventions aimed at improving health and preventing diseases
    • …
    corecore