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A network analysis of cofactor-
protein interactions for analyzing 
associations between human 
nutrition and diseases
Marie Pier Scott-Boyer1,*, Sébastien Lacroix1,*, Marco Scotti1,3, Melissa J. Morine1, Jim Kaput4 
& Corrado Priami1,2

The involvement of vitamins and other micronutrients in intermediary metabolism was elucidated 
in the mid 1900’s at the level of individual biochemical reactions. Biochemical pathways remain the 
foundational knowledgebase for understanding how micronutrient adequacy modulates health in all 
life stages. Current daily recommended intakes were usually established on the basis of the association 
of a single nutrient to a single, most sensitive adverse effect and thus neglect interdependent and 
pleiotropic effects of micronutrients on biological systems. Hence, the understanding of the impact 
of overt or sub-clinical nutrient deficiencies on biological processes remains incomplete. Developing 
a more complete view of the role of micronutrients and their metabolic products in protein-mediated 
reactions is of importance. We thus integrated and represented cofactor-protein interaction data from 
multiple and diverse sources into a multi-layer network representation that links cofactors, cofactor-
interacting proteins, biological processes, and diseases. Network representation of this information is 
a key feature of the present analysis and enables the integration of data from individual biochemical 
reactions and protein-protein interactions into a systems view, which may guide strategies for targeted 
nutritional interventions aimed at improving health and preventing diseases.

Malnutrition is a global problem that affects populations in low- and middle-income countries (LMICs) defi-
cient in vitamins and minerals as well as individuals in developed economies and urban areas consuming excess 
calories with insufficient levels of some micronutrients1–4. Populations from Germany, the United States, and 
the United Kingdom were all reported to have deficient intakes of vitamin D along with folic acid in Germany, 
vitamins A and E in the United States, and vitamin E in the United Kingdom1. Micronutrient inadequacies (i.e. 
either too low or too high) may contribute to the development of age-related chronic diseases5,6. Extending the 
understanding of the role of micronutrients from reactions to physiological systems7 is of critical importance to 
address the maintenance of health, the needs of the malnourished individuals8, the promotion of maternal and 
fetal health and development9–11, and the requirements of at-risk groups such as the elderly12 and the obese13.

Current daily recommended intakes were usually established on the basis of the association of a single nutrient 
to a single, most sensitive adverse effect in the most susceptible subpopulation14. These recommendations are 
imperfect and may lead to misevaluation of micronutrient (in)adequacies because of (i) inter-individual varia-
bility in requirements due to the influences of age, gender, activity level, and metabolic and socioeconomic status 
(e.g.,15), (ii) the fact that plasma nutrient levels might not reflect tissue storage and needs16, and (iii) because they 
potentially neglect interdependent and pleiotropic effects of micronutrients on biological systems by focusing 
on single nutrients. Failure to consider system interactions may explain why epidemiological studies associating 
individuals or multi-micronutrient supplementation with morbidity of specific diseases continue to yield contra-
dictory findings (e.g.,17–19).
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Comprehensive databases linking multiple interactions of micronutrient (as cofactors) and components 
(proteins) to biological pathways and diseases are not available. To address this knowledge gap, data from mul-
tiple sources was integrated to create a comprehensive knowledgebase of cofactors, their protein interactions, 
and associated diseases. This dataset was represented as an integrative multi-layered network linking cofactors, 
cofactor-interacting proteins, biological processes, and diseases (Fig. 1). This approach builds on similar analysis 
of the human disease network in which diseases were connected if they shared genetic polymorphisms20 and the 
zinc proteome interaction network21. The integrative network analysis presented here aids in unraveling how 
micronutrient (in)adequacies can influence multiple biological processes, ultimately leading to health mainte-
nance or disease progression.

Materials and Methods
Construction of the cofactor-protein network.  The EBI CoFactor22, the Uniprot23, Expasy24 and the 
Metal MACiE25 databases were mined to identify human proteins that require cofactors. In the Uniprot data-
base, both nutrients identified as cofactors as well as those specified as binding to a given protein were included. 
Non-specific cofactor requirements such as the case when either magnesium or manganese is required have been 
labeled as “metal”.

Manual curation of the data standardized the cofactor names, resulting in a single catalog of proteins associ-
ated with inorganic ions25 and organic and in vivo produced metabolites22. Vitamin A (retinol), Vitamin D (D3) 
and Vitamin E (alpha-tocopherol) are considered as transcriptional ligands or antioxidant molecules and are not 
in cofactor databases. The vitamin A/retinoic acid receptor RXR alpha and beta (RXRA and RXRB, respectively), 
vitamin D/vitamin D3 receptor (VDR), and Vitamin E and PXR were added to the combined list of proteins 
interacting with micronutrients.

Finally, information about genetic variants in the cofactor binding sites for some of the proteins in the catalog 
developed here was extracted from Uniprot database. The comprehensive dataset of proteins, the cofactor(s) with 
which they interact, and known binding site variants for those proteins are detailed in Supplementary Table S1.

The complete protein-cofactor dataset was represented as a network using Cytoscape 326.

Comparative analysis with the use of the protein-protein interaction network.  Module detection.  
We mapped the cofactor-interacting proteins to the protein-protein interaction (PPI) network from the Human 
Protein Reference Database (HPRD27) and extracted all cofactor-protein interactions. The first-degree neigh-
bors (non-cofactor-interacting proteins) that were shared by at least two cofactor-interacting proteins were also 
extracted. Such selection of neighbor proteins was implemented to minimize the risk of diluting the focus on 
cofactor-interacting proteins with proteins at the periphery of the network. Instead, only protein neighbors that 
act as bridges between areas of the network comprising cofactors-interacting proteins were considered in the 
analysis (see Fig. 2B. for schematic representation).

The resulting network included 4,187 proteins (of which 1,183 are cofactor-interacting proteins) and 21,333 
interactions, which consisted of 1,057 interactions between cofactor-interacting proteins, 8,935 interacting 
between cofactor-interacting proteins and their neighbors and 11,341 interactions between neighbors.

The module detection algorithm MCODE28 from the Cytoscape plugin clusterMaker (with parameters set to 
default) was then used to partition the network into modules. With such parameters, the algorithm groups only 
highly interacting proteins (i.e. removing singly-connected proteins from modules). Modules including more 
than 10 proteins were then further analyzed in order to identify over-representation of single cofactors and bio-
logical function enrichment for each module.

Figure 1.  Conceptual representation illustrating the construction of the cofactor-disease network. A third 
level of information was added to the cofactor-protein network to include interaction with disease genes. A 
cofactor is linked to a disease if they share the same cofactor-interacting protein(s).
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Analysis of protein-protein connectivity.  The PPI network for the cofactor proteome was determined using the 
approach developed by Goh et al.20. The network was constructed including the interactions from HPRD, BIND 
and BioGrid. Data were extracted from the i2d database29 and self-loops and multiple interactions involving the 
same pairs of proteins were removed. The resulting network had 14,687 proteins and 149,435 interactions.

Figure 2.  Cofactor-protein interaction network. (A) Larger nodes represent cofactors while smaller nodes 
represent proteins. The nodes are color-coded by cofactors where smaller black nodes represent proteins that 
interact with more than one cofactor. (B) Schematic representation of first-degree neighbors. Dotted nodes 
and edges represent first-degree neighbors interacting with only one cofactor-protein (not considered in 
analysis) while solid nodes and edges represent first-degree neighbors that are shared by at least two cofactor-
interacting proteins (considered in analysis). Note that first-degree neighbors were not represented in (A) 
for ease of visualization. Abbreviations: AB12: Adenosylcobalamin, AMP: Adenosine monophosphate, BH4: 
Tetrahydrobiopterin, CoA: Coenzyme A, CoQ: Coenzyme Q, FAD: flavin adenine dinucleotide, Fe-S: Iron-
Sulfur complex, FMN: Flavin mononucleotide, GO: Gene ontology, GSH: Glutathione, HPA: Human protein 
atlas, LA: Lipoic acid, LMIC: Low- and middle-income countries, MeB12: Methylcobalamin, MPT-Mo: 
Molybdopterin-Molybdenum, MPT: Molybdopterin, MTHF: Methyltetrahydrofolate, NAD: Nicotinamide 
adenine dinucleotide, NADP: Nicotinamide adenine dinucleotide phosphate, PP: Pyridoxal phosphate, 
PPI: Protein-protein interaction, PQQ: Pyrroloquinoline quinone, SAM: S-Adenosyl methionine, THF: 
Tetrahydrofolate, TPP: Thiamine pyrophosphate, VDR: Vitamin D receptor, and Vit: Vitamin.
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We then calculated the degree of connectivity of cofactor-interacting proteins in PPI network to identify 
the top 2% most connected proteins that were defined as hub proteins. It is generally assumed that such hub 
proteins have important biological roles30. Permutation tests were performed to evaluate if cofactor-interacting 
proteins were more connected than other, non-cofactor interacting proteins (the frequency of hubs found within 
non-cofactor interacting proteins was compared to that of cofactor-interacting proteins). This comparison was 
repeated 10,000 times.

The RNAseq data for 16 different tissues of the Human BodyMap 2.0 from Illumina database (GEO GSE30611) 
was used to evaluate if proteins interacting with the same cofactor had similar expression profiles. A total of 2,257 
cofactor-interacting proteins (79.5% of all cofactor-interacting proteins) were present in the dataset. The Pearson’s 
product moment correlation coefficient across all tissues was calculated between all pairs of proteins (genes) that 
interact with a given cofactor. For each cofactor, the average of every correlation coefficient was then compared to 
the correlation of a random group of proteins (genes) of the same size. This was repeated 10,000 times in order to 
obtain a p-value for each cofactor. This analysis was run only for cofactors interacting with 10 or more proteins.

Analysis of tissue-specific expression of cofactor-interacting proteins.  Tissue-specific expression 
of cofactor-interacting proteins was evaluated using data extracted from the Human Protein Atlas (HPA) data-
base31. This atlas provides information of antibody data from 82 cell types in 44 human tissues coupled with 
tissue-specific mRNA expression in 32 tissues. Cofactor-interacting proteins were classified into the following 
categories:

1.	 Tissue enriched: mRNA levels in one tissue at least five times higher than all other tissues,
2.	 Group enriched: mRNA levels of a group of 2 to 7 tissues at least five times those of all other tissues,
3.	 Tissue enhanced: mRNA levels in a particular tissue at least five times the average level in all tissues,
4.	 Expressed in all: mRNA detected in all tissues,
5.	 Mixed: detected in fewer than 32 tissues but not elevated in any tissue, or
6.	 Not detected.

Data mining with R package RISmed was conducted to identify the number of publications related to all 
cofactor-interacting proteins (genes) found for each HPA categories. We then compared the number of publica-
tions between categories to evaluate the possibility of publication bias (Student t-test).

Construction of the cofactor-disease network.  The DiseaseConnect database32, which associates 
genes with diseases, was used to link cofactor-interacting proteins to diseases. For the present analysis, data 
from OMIM (which included 3,644 genes and 4,299 diseases) and GWAS (which included 3,341 genes and 622 
diseases) databases were used. The statistical significance of the representation of cofactor-interacting proteins in 
disease genes was evaluated with a hypergeometric test in comparison to a randomly selected set of genes (from 
HUGO database33).

A bipartite network (cofactor-disease) was constructed starting from cofactor-protein-disease interactions. 
A cofactor was associated with a disease if it interacted with a protein known to be linked to that disease. Edges 
were weighted to represent the number of proteins interacting with a given cofactor and associated with a disease. 
Cohesion and hierarchical structure of the cofactor-disease network were analyzed with nestedness. Nestedness is 
widely used in ecology for characterizing the hierarchical organization and asymmetry of interactions in bipartite 
networks (e.g., plant-animal mutualistic networks)34,35. It quantifies the paired overlap in the interaction patterns 
of species in ecological communities and its value ranges from 0 to 1. In the present case, this index was used 
to evaluate the relative importance of cofactors to a disease. Diseases with lower nestedness interact with more 
cofactors, while diseases with higher nestedness interact with fewer cofactors. In other words, nestedness index 
gives indication about the dependency of a given disease to cofactor availability. The nestedness index was calcu-
lated with the R package bipartite36 for all the diseases associated with more than 5 cofactor-interacting proteins 
(genes).

Statistics, network analysis and gene enrichment analysis.  All statistics were computed with R 
3.0.137. Network analysis was performed with the R packages igraph38 and bipartite. The DAVID Bioinformatics 
Resources 6.7 web service was employed to evaluate GO biological process and KEGG, Reactome and Biocarta 
pathway enrichment using a Benjamini and Hochberg significance cut-off of 0.0539.

Results
Cofactor-protein interaction network.  Forty-nine (49) cofactors were retrieved from mining the EBI 
CoFactor, Uniprot, Expasy and Metal MACiE databases (refer to Fig. S1 for the classification of cofactors into 
their origins and to Fig. S2 for the overlap between information provided by these databases). A total of 2,840 
unique cofactor-protein interactions between those 49 cofactors and 2,301 proteins were found. The complete list 
of cofactor-protein interactions, and the known genetic variants that alter protein’s cofactor binding site are listed 
in Supplementary Table S1. The resulting network representation of cofactor-protein interactions can be found in 
Fig. 2 where cofactor-interacting proteins (smaller nodes) were linked to their required cofactors (larger nodes).

We then investigated the biological roles played by cofactor-interacting proteins within protein complexes. 
With the module detection algorithm we identified 12 modules (including more than 10 proteins) of highly inter-
acting proteins (see Table 1 and Supplementary Tables S2a and b). Most modules included proteins interacting 
with cofactors. Functional enrichment analysis revealed that proteins within modules are enriched for biological 
terms (GO) or pathways (KEGG, Reactome and Biocarta) with strong significance, thus confirming that the 
identified modules are grouping proteins that share functionally relevant interactions.
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Cofactor-interacting proteins topology in PPI network.  Forty-six (46) of the 300 hub proteins found 
in the i2d database interact with cofactors. Permutation tests indicated that cofactor-interacting proteins do not 
have a significant tendency to be hub proteins in comparison to a random set of non cofactor-interacting proteins 
(P =  0.13, permutation test).

Tissue-specific cofactor-interacting protein expression.  Analysis of tissue-specific cofactor-interacting  
protein expression revealed that 1,271 (44.8%) of these proteins are expressed in all tissues, 236 (8.3%) proteins 
are mixed, 133 (4.7%) proteins are group-enriched, 362 (12.7%) proteins are tissue-enhanced, 236 (8.3%) proteins 
are tissue-enriched (summarized in Table 2 and detailed in Supplementary Table S3), and 63 (2.2%) proteins are 
not detected. Comparison with randomly selected sets of proteins revealed that cofactor-interacting proteins are 
more often expressed in all tissues (P <  0.001, permutation test). These results might be explained by publica-
tion bias since widely expressed genes would be represented more often in protein-cofactor interaction knowl-
edgebases. However, further analysis was performed to test for publication bias and confirmed the difference in 
expression in all tissues between cofactor and non-cofactor enzymes. Interestingly, 34% of proteins enriched in 
adrenal glands, 26% of the proteins enriched in liver, and 25% of those enriched in pancreas require cofactors. 
Lower percentages of cofactor-interacting proteins per tissue-enriched proteins are found in bone marrow (9%) 
cerebral cortex (9%), testis (5%), and heart (6%).

Furthermore, RNAseq data from 16 different human tissues was used to assess if proteins interacting with a 
given cofactor have similar tissue expression profiles. This analysis revealed that proteins interacting with vita-
mins B1, B2, B3, B6, glutathione, S-adenosylmethionine, heme, ubiquinone, Fe-S complex and Mg are more often 
co-expressed across tissues than what is randomly expected (p-value <  0.01).

Cofactor-disease interaction network.  The GWAS database contains 379 diseases that are associated 
with at least one gene coding for a cofactor-interacting protein (which is 60.9% of the 622 diseases in the data-
base; see Fig. 3 and Supplementary Table S4). We calculated nestedness index (ranging from 0 to 1) to evaluate 

Module Number of Proteins Number of cofactor-protein (%) Cofactor Main Biological Functions and/or Pathways

1 10 1 (10.0%) Mg (ribosomal)RNA processing and ribosome 
biogenesis

2 19 2 (10.5%) Mg, Vit B6 (PP)
Positive regulation of transcription and RNA 

metabolic process.

HIV infection.

3 83 19 (22.9%) Ca, Mg, Zn, SAM, 
B5 (CoA)

Regulation of transcription, cell proliferation and 
apoptosis.

Cell surface signal transduction. Response to 
hormone (insulin) stimulus

Erb and PDGF signaling.

4 31 2 (6.5%) Mn, Zn
Cell surface signal transduction, Phosphate 
metabolic process, Regulation of apoptosis.

B and T cell receptor signaling

5 109 26 (23.9%)
Ca, Cu, Mg, Mn, 

SAM, Vit B5 
(CoA), Zn, metal

Regulation of macronutrient metabolism, cell 
differentiation, apoptosis, angiogenesis and TGFß 

signaling.

Pathway in colorectal and pancreatic cancer.

6 110 26 (23.6%)
Ca, Mg, SAM, Vit 
A, Vit B2 (FAD), 
Vit B9 (THF), Zn

Regulation of apoptosis, RNA metabolism, 
transcription factor activity, and protein kinase 
activity. Response to stress. NOD/Toll receptors 

signaling.

7 110 15 (13.6%)
Ca, Fe, Mg, Mn, 
SAM, Zn, metal, 

metal cation
Regulation of transcription, immune response, 

phosphorylation, and apoptosis.

8 46 10 (21.7%)
Fe-S complex, Mg, 

Zn, GSH, Vit B2 
(FAD)

Regulation of transcription, phosphorylation, JNK 
and MAPK activity. Insulin signaling pathway

9 12 5 (41.7%) Mg, Mn Regulation of apoptosis, JNK and MAPKKK 
activity

10 85 15 (17.6%) Ca, Mg, Mn, Zn, 
SAM, metal

Phosphate metabolic process.

Regulation of apoptosis.

11 12 4 (33.3%) Ca, Mg, Zn, metal –

12 25 9 (36.0%) Mg, Zn, metal, Vit 
B3 (NAD)

Regulation of phosphate metabolism, 
protein kinase activity, cell proliferation and 

differentiation.

TGFß signaling, TCA cycle, signaling by BMP and 
diabetes pathways.

Table 1.   Modules detected in the network of cofactor-interacting proteins and their first-degree neighbors. 
Details of number of proteins, number (percentage) of cofactor-interacting proteins, cofactor interactions and 
main biological functions (GO) and pathways (KEGG hsa, Reactome and Biocarta) annotation per module.
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the diversity of the cofactors with which disease-proteins (genes) interact. The diseases with the lowest nested-
ness (i.e. diseases that interact with the most diverse set of cofactors) are obesity, overnutrition, mood disorders, 
bronchial diseases, chronic obstructive airway disease, and diabetes mellitus (Fig. 3). On average, 10% of proteins 
(genes) associated with those diseases interact with at least one cofactor. In the case of obesity, which is the disease 
with the lowest nestedness index (index of 0), disease-related proteins (genes) interact with 26 different cofactors 
(i.e. representing 53% of all studied cofactors).

The OMIM database contains 1,354 diseases that are linked to at least one gene coding for a cofactor-interacting  
protein (31.4% of a total of 4,299 diseases; see Supplementary Table S4). In addition, 573 of the 2,301 
cofactor-interacting proteins (24.9%) were linked to at least one disease, a statistically significant enrichment 
(P <  0.001, hypergeometric test). The OMIM diseases with the lowest values of nestedness are linked to nutri-
tional status in which cofactors adequacy could potentially influence disease initiation, progression, and/
or outcome. For example, if we consider the diseases associated with more than 50 genes, four conditions (i.e. 
deficiency diseases, nutritional disorders, malnutrition and mitochondrial diseases) showed a high percent-
age of cofactor-interacting proteins: 40% of proteins involved in deficiency diseases, 40% of nutritional disor-
ders proteins, 41% of malnutrition proteins, and 39% of mitochondrial disease proteins interact with cofactors 
(Supplementary Table S4).

Discussion
A century of research focusing on individual reactions and related pathways has produced detailed biochemical 
maps of intermediary metabolism. While these maps are foundational for understanding the range of biologi-
cal processes that produce health or disease, metabolism is a complex system integrating processes of different 
sub-networks. The activity of the sub-networks may be affected by multiple inputs. We performed an integrative 
analysis on the cofactors required for many protein- and protein-mediated reactions. All of these cofactors are 
derived directly or through metabolism from naturally occurring dietary chemicals and can thus be influenced 
by dietary habits and interventions.

Developing this integrative knowledgebase required a multistep process of combining information on pro-
teins and their cofactor interactions from multiple databases, followed by network analysis. The requirement 
to integrate information about cofactor-protein interactions from the different databases is understanda-
ble because some of these databases are specialized for certain classes of cofactors. Indeed, the EBI CoFactor 
database is specialized on organic cofactors while the MACiE database focuses on metal ions. Integrating this 
knowledge warranted the creation of a unified and comprehensive dataset including all micronutrients and 
micronutrient-derived cofactors as described in this report. The representation of this knowledge into a network 

Tissue
Number of tissue-enriched 

cofactor-interacting protein
Total number of tissue-

enriched proteins1 Percentage (%)

Endometrium 2 4 50

Adrenal gland 13 38 34

Liver 45 172 26

Pancreas 11 44 25

Small intestine 1 4 25

Adipose tissue 4 21 19

Prostate 4 21 19

Gallbladder 1 6 17

Ovary 1 6 17

Placenta 15 86 17

Thyroid gland 4 23 17

Tonsil 1 6 17

Skeletal muscle 17 111 15

Esophagus 6 43 14

Duodenum 1 8 12

Spleen 1 8 12

Salivary gland 5 45 11

Stomach 3 28 11

Bone marrow 8 85 9

Cerebral cortex 29 318 9

Kidney 6 68 9

Skin 7 97 7

Heart muscle 2 33 6

Lung 1 17 6

Testis 47 999 5

Fallopian tube 1 60 2

Table 2.   Tissue-enriched cofactor-interacting proteins. 1From Human Proteome Atlas31.
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is a key feature of the analysis presented here since it facilitates the understanding of the multiple and broad inter-
actions between cofactors and proteins (Fig. 2). The associations of the cofactor-interacting proteins (genes) to 
diseases (Fig. 3) may provide strategies for targeting nutritional interventions to modulate complex phenotypes.

Analysis of the cofactor-interacting protein network augmented for selected first-degree neighbors (refer to 
Materials and Methods section) revealed that cofactor-interacting proteins are involved in a large variety of funda-
mental biological functions (Table 1) that could be involved in the development of complex disease phenotypes. 

Figure 3.  Cofactor-disease network. The cofactors (circles) are linked to a GWAS disease (squares) if 
protein(s) associated with that given disease interact with the target cofactors. Diseases are color-coded 
according the percentage of GWAS proteins that interact with cofactors and ranked according to nestedness 
(ascending order from top to bottom). Edges are weighted by the number of GWAS proteins that require a given 
cofactor.
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Moreover, more cofactor-interacting proteins than other proteins are expressed in many tissue types (Table 2). 
Proteins that interact with certain cofactors, most notably organic vitamins, tend to be co-expressed in all tissues, 
which could result from similarly regulated ADME (i.e. absorption, distribution, metabolism and excretion) 
processes. These data may be used to more critically analyze and test Ames’ triage theory5, which states that in 
the context of nutrient deficiencies, micronutrients (and by implication, their cofactors) would be preferentially 
used in reactions and processes that ensure short-term survival (e.g., energy production) over those involved 
with long-term survival (e.g., DNA repair). Although our data cannot strictly test this hypothesis, it can serve to 
estimate the importance of different micronutrients in short- and long-term survival associated processes. For 
instance, cofactor-interacting proteins were over-represented (P ≪  0.001, hypergeometric test) in genes (proteins) 
involved in DNA repair (GO:0006281). Cofactor-interacting proteins involved in genome integrity required sig-
nificantly more Mg, Fe-S complex and THF (vitamin B9) than randomly selected cofactor-interacting proteins 
(P <  0.01, permutation test). It could thus be postulated that deficiencies in one or more of these cofactors could 
significantly impact DNA repair and thus hamper long-term survival. This would however need to be validated 
experimentally but recent publications showed that DNA damage was minimized in cell cultures under elevated 
folate concentrations40 and suggested a critical role of Fe-S complexes in long-term coordination of DNA repli-
cation and repair41.

Overt nutrient deficiencies are increasingly rare, at least in developed and many LMICs, while nutrient inad-
equacies of varying degree are more likely to occur1,42. These inadequacies may result from normal aging43 or 
from metabolic deregulations that underlie age-related or obesity-related disorders18,44 that may affect micronu-
trient absorption, transport, or utilization. However, nutrient inadequacies may also be observed in otherwise 
healthy individuals and be the result of genetic variants affecting nutrient (cofactor) absorption, tissue-specific 
distribution, and/or utilization in biochemical reactions. A possible and likely scenario to explain such pheno-
types is that genetic variants in cofactor transporters or in cofactor binding-sites may affect tissue absorption or 
distribution. Variants may also directly or indirectly alter cofactor-protein binding affinity25 and, in some cases, 
biochemical parameters that affect substrate utilization within the cofactor interactome. One or a combination of 
these elements could modify nutrient bioavailability and requirements, explain inadequacies and resulting met-
abolic alterations. The KM mutant theory put forward by Ames et al. furthers this hypothesis and postulates that 
increasing levels of micronutrients – by means of lifestyle modifications or micronutrient interventions – could 
compensate genetic variants lowering the affinity constants (increased KM) of some enzymes45.

To extend this concept, the cofactor-interacting proteins were associated with diseases from the OMIM data-
base. Unsurprisingly, top diseases were those related to nutritional aspects such as malnutrition and nutrient ade-
quacy. Interestingly, mitochondrial disease was also associated with a large number of proteins interacting with 
cofactors. For example, important proteins from the mitochondrial complex I-II-III (e.g., CYC1, NDUFA1-10, 
NDUFS1-2-3-7, NDUFV1-2, SDHA/B, COQ6 and PDSS1) and those involved in energy metabolism (PDHA1 
and ACAD9/VL) interact with many cofactors including magnesium, zinc, and NAD. However, OMIM diseases 
are primarily Mendelian (i.e. single gene) diseases and inborn errors of metabolism, which may thus be weakly 
influenced by nutrition in comparison to complex diseases, such as those listed in GWAS databases. Complex 
phenotypes result from the interplay between multiple low-penetrant polymorphisms and environmental factors.

We mined the GWAS database to identify genes coding for cofactor-interacting proteins associated with com-
plex phenotypes. GWAS disease-genes (proteins) that interact with the most diverse cofactors (low nestedness 
indices) were associated with obesity and overnutrition (both sharing the same gene set). Functional analysis 
of the GWAS cofactor-genes revealed significant GO biological function for purine and nitrogen metabolism 
(ADCY3-9, ARG, GCH1, ATP12A, KMO). In addition, the genes identified by GWAS for these diseases mostly 
interact with metal cofactors with similar molecular weight and oxidation number (i.e. Mg2+, Mn2+, Zn2+, and 
Ca2+) (although different in sizes and hydration spheres). Alterations in absorption, distribution, or binding 
mechanisms of those metals could affect tissue-specific bioavailability and deregulate energy metabolism. In 
addition, variations in cofactor binding sites such as those found in GTP cyclohydrolase (GCH1; Uniprot P30793, 
variants in amino acids at position 141, 144 and 212) could alter its cofactor affinity (KM) and requirements. This 
enzyme is the rate-limiting enzyme in tetrahydrobiopterin (BH4) biosynthesis and modulation of its activity 
would in turn influence BH4 related pathways such as nitric oxide metabolism and endothelial function, and the 
one-carbon pool by folate pathway (see Supplementary Table S1).

Recent observations showed benefits of normalization by supplementation of micronutrient inadequacies 
often associated with over-consumption of Western-type diets. A number of cardiometabolic markers were posi-
tively modulated in obese individuals provided 8 weeks of a multi-nutrient supplementation46. These results sup-
port our observation that obesity-related proteins interact with a large array of diverse cofactors affecting different 
subsystems such as pathways and processes involved in and contributing to cardiovascular health. Hence, obese 
individuals may potentially benefit from targeted improvement of micronutrient bioavailability. Interestingly, 
the authors of the study suggest that the improvements in cardiometabolic markers could result from improve-
ments of mitochondrial function, which is, as noted herein, associated with a large number of cofactor-interacting 
proteins.

The networks and dataset presented here could be used to unravel the influence of micronutrient (in)adequa-
cies on biological processes and constitute part of the knowledgebase supporting interventions aimed at promot-
ing health, and preventing / reversing many adverse phenotypes and diseases associated to cofactor-interacting 
proteins. First, the subset of proteins (circled in blue in Fig. 4) that should be modulated by a dietary intervention 
(on the basis of its micronutrient composition) can be identified and assessed in the cofactor-interacting protein 
network. By contributing to improve the understanding of how biological pathways are targeted by the dietary 
intervention this could unveil possible effects on clinical phenotype or disease (blue path in Fig. 4). Second, the 
cofactor-interacting proteins involved in biological pathways or disease of interest can be mapped onto the net-
work (circled in red in Fig. 4). Such pathways can be used to identify which cofactors – and by extension which 
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nutrients – have to be targeted by the intervention to modify the (clinical) phenotype of interest (red path in 
Fig. 4). Third, genetic variants in cofactor-interacting proteins that are involved in pathways linked to clinical 
markers and show inter-individual response variability to a nutritional intervention (circled in green in Fig. 4) 
can be investigated. This can contribute to better understand the origin of such variability and the information 
gained from such study can be used for tailoring genotype-specific interventions or identifying subpopulations 
with better odds of responding positively to the dietary intervention (green path in Fig. 4). These premises are, 
however, based on the assumption that improvements of nutrient bioavailability ameliorate cofactor-interacting 
protein (enzymatic) function. This would need to be further investigated since information to that effect is not 
yet always available.

Furthermore, the paths depicted in Fig. 4 can also be followed in a tissue-specific manner in cases were the 
(patho)physiological condition of interest involves only a single or a few tissue(s). In such instances, the net-
work would first be pruned to keep only proteins expressed in all tissues (i.e “housekeeping” proteins) and those 
enriched and/or enhanced in the tissue(s) related to the condition investigated. Such strategy may improve 
investigations of the impact of cofactor availability or nutrient interventions by reducing the potential interfer-
ence of proteins (and associated pathways) unrelated to the condition being investigated. Similarly, tissue and/
or condition-specific regulation of protein activity could be accounted for in building a context-specific net-
work47. However, knowledge regarding post-translational regulation might be too sparse to be fully exploited at 
the moment.

The limitations of the compilation of cofactor-protein interactions and the network analysis are the availability 
of data in cofactor databases and publication bias. Nevertheless, the results presented here provide an integration 
of data from disparate sources to create a more comprehensive, systems knowledgebase for micronutrient and 
cofactor processes that alter metabolism. The development of this cofactor-protein interaction knowledgebase 
provides an approach to better study and explain the effects of multivitamin and mineral intake on different pro-
cesses, in different tissues, and in different metabolic states and diseases.

Conclusions
“Tuning-up” metabolism48 to optimize health and delay or prevent disease49 will likely not be possible with single 
nutrient interventions. The systems approach described here shows the overlapping metabolic processes that 
often require multiple cofactors from different dietary components (e.g., metal ions versus vitamins). These data 
and results are being extended to assess how population and individual allele frequencies may influence specific 
biological processes identified in this analysis and how dietary intakes could be mapped through the knowledge-
base developed in the present project to allow prediction of nutrient needs. The goal of these efforts is to contrib-
ute to a better molecular understanding of the consequences of nutritional inadequacies. The integrated database 
and network analysis reported here represents an important step that will be the foundations onto which targeted 
nutritional interventions aimed at improving micronutrient status will be based in efforts to normalize impaired 
biological functions.

Figure 4.  Applicability of the cofactor-interacting protein network. Schematic representation of three 
potential applications of the cofactor-interacting protein network. A first path (blue) can be followed in order to 
identify the proteins, biological pathway(s) (circled in blue in the network) and clinical phenotype(s) or disease 
that should be modulated by an intervention on the basis of its nutrient composition. A second path (red) 
following the reverse approach in which cofactor-interacting proteins (circled in red in the network) involved 
in biological pathway(s) or disease of interest can be mapped onto the network in order to identify the cofactors 
– and by extension the nutrients – that would need to be targeted by a nutrient-based intervention in order to 
modify said phenotype(s) of interest. A third path (green) can rely on the network to investigate the potential 
origins of inter-individual variability in response to a nutritional intervention by investigating genetic variants 
in cofactor-interacting proteins involved in proteins and pathway(s) (circled in green in the network) linked to 
clinical markers of interest.
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