19 research outputs found

    Assessment of the human health risks and toxicity associated to particles (PM10, PM2.5 and PM1), organic pollutants and metals around cement plants

    Get PDF
    Les partícules en suspensió (PM) són el contaminant aeri més perillós per a la salut humana. Aquestes es componen de partícules sòlides i líquides que floten a l’aire i que tenen mida i composició química diversa. Les PM solen classificar-se segons la seva mida. Així, aquelles que presenten un diàmetre menor de 10 micres es nomenen PM10, les menors de 2,5 micres es coneixen com PM2.5, i les menors de 1 micres es nomenen PM1. Una de les indústries tradicionalment reconegudes com a font de PM són les cimenteres. Encara que hi ha nombrosos estudis dedicats a les PM al voltant de cimenteres, aquests solen enfocar-se en les PM10, ignorant la importància d'aquelles més petites, i que poden arribar a zones més profundes de l'aparell respiratori. En la present tesi es van recollir PM10, PM2.5 i PM1 en una àrea influenciada per una cimentera durant diferents estacions. Posteriorment, es va dur a terme una caracterització fisicoquímica d'aquestes partícules, per estudiar els seus riscos inhalatoris i contribució de la cimentera al total de PM ambiental. A més, part d'aquestes partícules es van dedicar a fer assajos in-vitro amb cèl·lules respiratòries, per avaluar la seva toxicitat. Els majors nivells de PM es van registrar a l'hivern. A més, es va trobar que més del 60% de les partícules respirables són PM1. Aquesta última fracció va contenir els majors nivells d'alguns metalls pesats i hidrocarburs policíclics, presentant els majors riscos per a la població. Les proves in-vitro van revelar que la fracció fina (PM2.5) donava lloc a una toxicitat general més gran que les PM10. Finalment, la contribució de la cimentera al total de PM ambiental va resultar patent i dependent de l'estat productiu de la planta. Els resultats d'aquesta tesi mostren la importància d'estudiar les partícules fines (PM2.5 i PM1) en entorns influenciats per fàbriques de ciment.Las partículas en suspensión (PM) son el contaminante aéreo más peligroso para la salud humana. Éstas se componen de partículas sólidas y líquidas que flotan en el aire y que tienen tamaño y composición química diversa. Las PM suelen clasificarse según su tamaño. Así, aquellas que presentan un diámetro menor de 10 µm se nombran PM10, las menores de 2,5 µm se conocen como PM2.5, y las menores de 1 µm se nombran PM1. Una de las industrias tradicionalmente reconocidas como fuente de PM son las cementeras. Aunque hay numerosos estudios dedicados a las PM alrededor de cementeras, éstos suelen enfocarse en las PM10, ignorando la importancia de aquéllas más pequeñas, y que pueden llegar a zonas más profundas del aparato respiratorio. En la presente tesis se recogieron PM10, PM2.5 y PM1 en un área influenciada por una cementera en diferentes estaciones. Posteriormente, se llevó a cabo una caracterización fisicoquímica de estas partículas, para estudiar sus riesgos inhalatorios y contribución de la cementera al total de PM ambiental. Además, parte de estas partículas se dedicaron a hacer ensayos de in-vitro con células respiratorias, para evaluar su toxicidad. Los mayores niveles de PM se registraron en invierno. Además, se encontró que más del 60% de las partículas respirables son PM1. Esta última fracción contuvo los mayores niveles de algunos metales pesados e hidrocarburos policíclicos, presentando los mayores riesgos para la población. Las pruebas in-vitro revelaron que la fracción fina (PM2.5) daba lugar a una toxicidad general mayor que las PM10. Por último, la contribución de la cementera al total de PM ambiental resultó patente y dependiente del estado productivo de la planta. Los resultados de esta tesis muestran la importancia de estudiar las partículas finas (PM2.5 y PM1) en entornos influenciados por fábricas de cemento.Particulate matter (PM) is the most dangerous air pollutant for human health. Particulate matter is composed of solid and liquid particles floating in the air and having different size and chemical composition. PMs are usually classified according to their size. Thus, those with a diameter smaller than 10 μm are named PM10, those smaller than 2.5 μm are known as PM2.5, and those smaller than 1 μm are referred as PM1. Cement plants are one of the industries traditionally recognized as sources of PM. Although there are numerous studies dedicated to PM around cement factories, they tend to focus on PM10, ignoring the importance of smaller PM, which can reach deeper areas of the respiratory system. In the present thesis PM10, PM2.5 and PM1 were collected in an area influenced by a cement plant in different seasons. Subsequently, a physicochemical characterization of these particles was carried out to study their inhalation risks and the cement plant's contribution to the total environmental PM. In addition, to evaluate their toxicity part of these particles was dedicated to performing in-vitro tests with respiratory cells. The highest PM levels were recorded in winter. In addition, it was found that more than 60% of the respirable particles are PM1. This last fraction contained the highest levels of some heavy metals and polycyclic hydrocarbons, presenting the greatest risks for the population. In-vitro tests revealed that the fine fraction (PM2.5) resulted in a higher overall toxicity than PM10. Finally, the contribution of the cement company to the total environmental PM was clear and dependent on the productive state of the plant. The results of this thesis highlight the importance of studying fine particles (PM2.5 and PM1) in environments influenced by cement factories

    Integrating dual C and N isotopic approach to elemental and mathematical solutions for improving the PM source apportionment in complex urban and industrial cities: Case of Tarragona - Spain

    Full text link
    Identification of dominant airborne Particulate Matter (PM) sources is essential for maintaining high air quality standards and thus ensuring a good public health. In this study, different approaches were applied for source apportionment of three PM fractions (PM1, PM2.5 and PM10) at the outdoor of 14 schools of a coastal city with a significant land use interweaving such as Tarragona (Spain). PM were collected in 24h-quartz microfiber filters in two seasonal campaigns (cold and warm), together with nine local potential sources, so a total of 84 samples were chemically, mineralogically, and isotopically characterised. Source apportionment was assessed by (i) main chemical components, (ii) Principal Component Analysis (PCA), (iii) dual C and N isotope approach, and (iv) a Bayesian isotope mixing model. When chemical concentrations were grouped into marine, crustal, secondary inorganic aerosols and organic matter + elemental carbon categories, the unaccounted component reached 45% of PM mass. The PCA allowed to identify also traffic and industrial contributions, reducing the unaccounted mass to about 25%. Adding δ13C and δ15N values, secondary organic aerosol could be estimated and a continuous contribution of diesel combustion was identified together with a remarkable use of natural gas in winter. Isotopic values were better understood when considering air masses back trajectories and a possible long-distance contribution from coal-fired electric generating units (EGUs). Finally, using Bayesian dual isotope mixing models, the unaccounted PM mass was reduced up to 5% when adding these EGUs to marine-carbonate related, road traffic, domestic heating, waste incinerator and livestock waste contributions. The added value of the dual isotope approach combined with a Bayesian isotope mixing model, in comparison with conventional chemical approaches, was thus demonstrated for PM source apportionment in an urban and industrial site where many sources and processes converge and can then be applied to other complex cities

    Human exposure and risk assessment of PAHs bound to three PM fractions (10, 2.5 and 1) in an area influenced by a cement plant

    Get PDF
    In the present study, we evaluated the concentrations of PAHs in 3 PM fractions (10, 2.5 and 1) collected in the surroundings of a cement plant located in Barcelona. PAH content and speciation were developed for the three fractions to elucidate their distribution among different sizes. Complementarily, the human health risks associated to the PAH exposure were risks by considering the daily activity pattern of an average adult living in of Barcelona (Spain).Financial support was received by the Spanish Ministry of Economy and Competitiveness (MINECO), through the project CTM2012-32778. F. Sánchez-Soberón received a doctoral scholarship as part of the project above mentioned. We also want to thank the European Union Seventh Framework Program for the funding received through the HEALS project (grant agreement No. 603946).Peer reviewe

    Helping WWTP managers to address the volatile methylsiloxanes issue-Behaviour and complete mass balance in a conventional plant

    Get PDF
    Volatile methylsiloxanes (VMSs) are a group of additives employed in different consumer products that can affect the quality of the biogas produced in wastewater treatment plants (WWTPs). The main objective of this study is to understand the fate of different VMSs along the treatment process of a WWTP located in Aveiro (Portugal). Thus, wastewater, sludge, biogas, and air were sampled in different units for two weeks. Subsequently, these samples were extracted and analyzed by different environment-friendly protocols to obtain their VMS (L3-L5, D3-D6) concentrations and profiles. Finally, considering the different matrix flows at every sampling moment, the mass distribution of VMSs within the plant was estimated. The levels of ∑VMSs were similar to those showed in the literature (0.1-50 μg/L in entry wastewater and 1-100 μg/g dw in primary sludge). However, the entry wastewater profile showed higher variability in D3 concentrations (from non detected to 49 μg/L) than found in previous studies (0.10-1.00 μg/L), likely caused by isolated releases of this compound that could be related to industrial sources. Outdoor air samples showed a prevalence of D5, while indoor air locations were characterized by a predominance of D3 and D4. Differences in sources and the presence of an indoor air filtration system may explain this divergence. Biogas was characterized by ∑VMSs concentrations (8.00 ± 0.22 mg/m3) above the limits recommended by some engine manufacturers and mainly composed of D5 (89%). Overall, 81% of the total incoming mass of VMSs is reduced along the WWTP, being the primary decanter and the secondary treatment responsible for the highest decrease (30.6% and 29.4% of the initial mass, respectively). This reduction, however, is congener dependant. The present study demonstrates the importance of extending sampling periods and matrices (i.e., sludge and air) to improve sample representativity, time-sensitivity, and the accuracy of mass balance exercises.This work was financially supported by: (i) Projects LA/P/0045/2020 (ALiCE – Associated Laboratory in Chemical Engineering) and UIDB/00511/2020 and UIDP/00511/2020 (LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy), funded by national funds through FCT/MCTES (PIDDAC); (ii) Project LANSILOT (PTDC/CTA-AMB/32084/2017; POCI-01–0145-FEDER-032084), funded by FEDER through COMPETE2020—Programa Operacional Competitividade e Internacionalizaçao(POCI) and by national funds (PIDDAC) through FCT/MCTES; (iii) Project “HealthyWaters – Identification, Elimination, Social Awareness and Education of Water Chemical and Biological Micropollutants with Health and Environmental Implications” (NORTE-01-0145-FEDER-000069), co-financed by Programa Operacional Regional do Norte (NORTE 2020), through Portugal 2020 and FEDER; (iv) N. Ratola thanks FCT for the financial support of his work contract through the Scientific Employment Stimulus -Institutional Call - [CEECINST/00049/2018]; (v) G. Pantuzza thanks FCT PhD programme for Grant 2020.07815.BD, supported under the Portugal 2020 Partnership Agreement and European Social Fund (ESF); (vi) V. Homem thanks national funds through FCT, under the Scientific Employment Stimulus—Individual Call - CEECIND/00676/2017. The authors wish to thank the help of the staff at the WWTP in the design of the sampling strategy and the collection of the samples.S

    A Broad Assessment of Factors Determining Culicoides imicola Abundance: Modelling the Present and Forecasting Its Future in Climate Change Scenarios

    Get PDF
    Bluetongue (BT) is still present in Europe and the introduction of new serotypes from endemic areas in the African continent is a possible threat. Culicoides imicola remains one of the most relevant BT vectors in Spain and research on the environmental determinants driving its life cycle is key to preventing and controlling BT. Our aim was to improve our understanding of the biotic and abiotic determinants of C. imicola by modelling its present abundance, studying the spatial pattern of predicted abundance in relation to BT outbreaks, and investigating how the predicted current distribution and abundance patterns might change under future (2011–2040) scenarios of climate change according to the Intergovernmental Panel on Climate Change. C. imicola abundance data from the bluetongue national surveillance programme were modelled with spatial, topoclimatic, host and soil factors. The influence of these factors was further assessed by variation partitioning procedures. The predicted abundance of C. imicola was also projected to a future period. Variation partitioning demonstrated that the pure effect of host and topoclimate factors explained a high percentage (>80%) of the variation. The pure effect of soil followed in importance in explaining the abundance of C. imicola. A close link was confirmed between C. imicola abundance and BT outbreaks. To the best of our knowledge, this study is the first to consider wild and domestic hosts in predictive modelling for an arthropod vector. The main findings regarding the near future show that there is no evidence to suggest that there will be an important increase in the distribution range of C. imicola; this contrasts with an expected increase in abundance in the areas where it is already present in mainland Spain. What may be expected regarding the future scenario for orbiviruses in mainland Spain, is that higher predicted C. imicola abundance may significantly change the rate of transmission of orbiviruses

    Type 2 Diabetes Variants Disrupt Function of SLC16A11 through Two Distinct Mechanisms

    Get PDF
    Type 2 diabetes (T2D) affects Latinos at twice the rate seen in populations of European descent. We recently identified a risk haplotype spanning SLC16A11 that explains ∼20% of the increased T2D prevalence in Mexico. Here, through genetic fine-mapping, we define a set of tightly linked variants likely to contain the causal allele(s). We show that variants on the T2D-associated haplotype have two distinct effects: (1) decreasing SLC16A11 expression in liver and (2) disrupting a key interaction with basigin, thereby reducing cell-surface localization. Both independent mechanisms reduce SLC16A11 function and suggest SLC16A11 is the causal gene at this locus. To gain insight into how SLC16A11 disruption impacts T2D risk, we demonstrate that SLC16A11 is a proton-coupled monocarboxylate transporter and that genetic perturbation of SLC16A11 induces changes in fatty acid and lipid metabolism that are associated with increased T2D risk. Our findings suggest that increasing SLC16A11 function could be therapeutically beneficial for T2D. Video Abstract [Figure presented] Keywords: type 2 diabetes (T2D); genetics; disease mechanism; SLC16A11; MCT11; solute carrier (SLC); monocarboxylates; fatty acid metabolism; lipid metabolism; precision medicin

    Assessment of the human health risks and toxicity associated to particles (PM10, PM2.5 and PM1), organic pollutants and metals around cement plants

    No full text
    Les partícules en suspensió (PM) són el contaminant aeri més perillós per a la salut humana. Aquestes es componen de partícules sòlides i líquides que floten a l’aire i que tenen mida i composició química diversa. Les PM solen classificar-se segons la seva mida. Així, aquelles que presenten un diàmetre menor de 10 micres es nomenen PM10, les menors de 2,5 micres es coneixen com PM2.5, i les menors de 1 micres es nomenen PM1. Una de les indústries tradicionalment reconegudes com a font de PM són les cimenteres. Encara que hi ha nombrosos estudis dedicats a les PM al voltant de cimenteres, aquests solen enfocar-se en les PM10, ignorant la importància d'aquelles més petites, i que poden arribar a zones més profundes de l'aparell respiratori. En la present tesi es van recollir PM10, PM2.5 i PM1 en una àrea influenciada per una cimentera durant diferents estacions. Posteriorment, es va dur a terme una caracterització fisicoquímica d'aquestes partícules, per estudiar els seus riscos inhalatoris i contribució de la cimentera al total de PM ambiental. A més, part d'aquestes partícules es van dedicar a fer assajos in-vitro amb cèl·lules respiratòries, per avaluar la seva toxicitat. Els majors nivells de PM es van registrar a l'hivern. A més, es va trobar que més del 60% de les partícules respirables són PM1. Aquesta última fracció va contenir els majors nivells d'alguns metalls pesats i hidrocarburs policíclics, presentant els majors riscos per a la població. Les proves in-vitro van revelar que la fracció fina (PM2.5) donava lloc a una toxicitat general més gran que les PM10. Finalment, la contribució de la cimentera al total de PM ambiental va resultar patent i dependent de l'estat productiu de la planta. Els resultats d'aquesta tesi mostren la importància d'estudiar les partícules fines (PM2.5 i PM1) en entorns influenciats per fàbriques de ciment.Las partículas en suspensión (PM) son el contaminante aéreo más peligroso para la salud humana. Éstas se componen de partículas sólidas y líquidas que flotan en el aire y que tienen tamaño y composición química diversa. Las PM suelen clasificarse según su tamaño. Así, aquellas que presentan un diámetro menor de 10 µm se nombran PM10, las menores de 2,5 µm se conocen como PM2.5, y las menores de 1 µm se nombran PM1. Una de las industrias tradicionalmente reconocidas como fuente de PM son las cementeras. Aunque hay numerosos estudios dedicados a las PM alrededor de cementeras, éstos suelen enfocarse en las PM10, ignorando la importancia de aquéllas más pequeñas, y que pueden llegar a zonas más profundas del aparato respiratorio. En la presente tesis se recogieron PM10, PM2.5 y PM1 en un área influenciada por una cementera en diferentes estaciones. Posteriormente, se llevó a cabo una caracterización fisicoquímica de estas partículas, para estudiar sus riesgos inhalatorios y contribución de la cementera al total de PM ambiental. Además, parte de estas partículas se dedicaron a hacer ensayos de in-vitro con células respiratorias, para evaluar su toxicidad. Los mayores niveles de PM se registraron en invierno. Además, se encontró que más del 60% de las partículas respirables son PM1. Esta última fracción contuvo los mayores niveles de algunos metales pesados e hidrocarburos policíclicos, presentando los mayores riesgos para la población. Las pruebas in-vitro revelaron que la fracción fina (PM2.5) daba lugar a una toxicidad general mayor que las PM10. Por último, la contribución de la cementera al total de PM ambiental resultó patente y dependiente del estado productivo de la planta. Los resultados de esta tesis muestran la importancia de estudiar las partículas finas (PM2.5 y PM1) en entornos influenciados por fábricas de cemento.Particulate matter (PM) is the most dangerous air pollutant for human health. Particulate matter is composed of solid and liquid particles floating in the air and having different size and chemical composition. PMs are usually classified according to their size. Thus, those with a diameter smaller than 10 μm are named PM10, those smaller than 2.5 μm are known as PM2.5, and those smaller than 1 μm are referred as PM1. Cement plants are one of the industries traditionally recognized as sources of PM. Although there are numerous studies dedicated to PM around cement factories, they tend to focus on PM10, ignoring the importance of smaller PM, which can reach deeper areas of the respiratory system. In the present thesis PM10, PM2.5 and PM1 were collected in an area influenced by a cement plant in different seasons. Subsequently, a physicochemical characterization of these particles was carried out to study their inhalation risks and the cement plant's contribution to the total environmental PM. In addition, to evaluate their toxicity part of these particles was dedicated to performing in-vitro tests with respiratory cells. The highest PM levels were recorded in winter. In addition, it was found that more than 60% of the respirable particles are PM1. This last fraction contained the highest levels of some heavy metals and polycyclic hydrocarbons, presenting the greatest risks for the population. In-vitro tests revealed that the fine fraction (PM2.5) resulted in a higher overall toxicity than PM10. Finally, the contribution of the cement company to the total environmental PM was clear and dependent on the productive state of the plant. The results of this thesis highlight the importance of studying fine particles (PM2.5 and PM1) in environments influenced by cement factories

    Assessment of the human health risks and toxicity associated to particles (PM10, PM2.5 and PM1), organic pollutants and metals around cement plants

    Get PDF
    Les partícules en suspensió (PM) són el contaminant aeri més perillós per a la salut humana. Aquestes es componen de partícules sòlides i líquides que floten a l’aire i que tenen mida i composició química diversa. Les PM solen classificar-se segons la seva mida. Així, aquelles que presenten un diàmetre menor de 10 micres es nomenen PM10, les menors de 2,5 micres es coneixen com PM2.5, i les menors de 1 micres es nomenen PM1. Una de les indústries tradicionalment reconegudes com a font de PM són les cimenteres. Encara que hi ha nombrosos estudis dedicats a les PM al voltant de cimenteres, aquests solen enfocar-se en les PM10, ignorant la importància d'aquelles més petites, i que poden arribar a zones més profundes de l'aparell respiratori. En la present tesi es van recollir PM10, PM2.5 i PM1 en una àrea influenciada per una cimentera durant diferents estacions. Posteriorment, es va dur a terme una caracterització fisicoquímica d'aquestes partícules, per estudiar els seus riscos inhalatoris i contribució de la cimentera al total de PM ambiental. A més, part d'aquestes partícules es van dedicar a fer assajos in-vitro amb cèl·lules respiratòries, per avaluar la seva toxicitat. Els majors nivells de PM es van registrar a l'hivern. A més, es va trobar que més del 60% de les partícules respirables són PM1. Aquesta última fracció va contenir els majors nivells d'alguns metalls pesats i hidrocarburs policíclics, presentant els majors riscos per a la població. Les proves in-vitro van revelar que la fracció fina (PM2.5) donava lloc a una toxicitat general més gran que les PM10. Finalment, la contribució de la cimentera al total de PM ambiental va resultar patent i dependent de l'estat productiu de la planta. Els resultats d'aquesta tesi mostren la importància d'estudiar les partícules fines (PM2.5 i PM1) en entorns influenciats per fàbriques de ciment.Las partículas en suspensión (PM) son el contaminante aéreo más peligroso para la salud humana. Éstas se componen de partículas sólidas y líquidas que flotan en el aire y que tienen tamaño y composición química diversa. Las PM suelen clasificarse según su tamaño. Así, aquellas que presentan un diámetro menor de 10 µm se nombran PM10, las menores de 2,5 µm se conocen como PM2.5, y las menores de 1 µm se nombran PM1. Una de las industrias tradicionalmente reconocidas como fuente de PM son las cementeras. Aunque hay numerosos estudios dedicados a las PM alrededor de cementeras, éstos suelen enfocarse en las PM10, ignorando la importancia de aquéllas más pequeñas, y que pueden llegar a zonas más profundas del aparato respiratorio. En la presente tesis se recogieron PM10, PM2.5 y PM1 en un área influenciada por una cementera en diferentes estaciones. Posteriormente, se llevó a cabo una caracterización fisicoquímica de estas partículas, para estudiar sus riesgos inhalatorios y contribución de la cementera al total de PM ambiental. Además, parte de estas partículas se dedicaron a hacer ensayos de in-vitro con células respiratorias, para evaluar su toxicidad. Los mayores niveles de PM se registraron en invierno. Además, se encontró que más del 60% de las partículas respirables son PM1. Esta última fracción contuvo los mayores niveles de algunos metales pesados e hidrocarburos policíclicos, presentando los mayores riesgos para la población. Las pruebas in-vitro revelaron que la fracción fina (PM2.5) daba lugar a una toxicidad general mayor que las PM10. Por último, la contribución de la cementera al total de PM ambiental resultó patente y dependiente del estado productivo de la planta. Los resultados de esta tesis muestran la importancia de estudiar las partículas finas (PM2.5 y PM1) en entornos influenciados por fábricas de cemento.Particulate matter (PM) is the most dangerous air pollutant for human health. Particulate matter is composed of solid and liquid particles floating in the air and having different size and chemical composition. PMs are usually classified according to their size. Thus, those with a diameter smaller than 10 μm are named PM10, those smaller than 2.5 μm are known as PM2.5, and those smaller than 1 μm are referred as PM1. Cement plants are one of the industries traditionally recognized as sources of PM. Although there are numerous studies dedicated to PM around cement factories, they tend to focus on PM10, ignoring the importance of smaller PM, which can reach deeper areas of the respiratory system. In the present thesis PM10, PM2.5 and PM1 were collected in an area influenced by a cement plant in different seasons. Subsequently, a physicochemical characterization of these particles was carried out to study their inhalation risks and the cement plant's contribution to the total environmental PM. In addition, to evaluate their toxicity part of these particles was dedicated to performing in-vitro tests with respiratory cells. The highest PM levels were recorded in winter. In addition, it was found that more than 60% of the respirable particles are PM1. This last fraction contained the highest levels of some heavy metals and polycyclic hydrocarbons, presenting the greatest risks for the population. In-vitro tests revealed that the fine fraction (PM2.5) resulted in a higher overall toxicity than PM10. Finally, the contribution of the cement company to the total environmental PM was clear and dependent on the productive state of the plant. The results of this thesis highlight the importance of studying fine particles (PM2.5 and PM1) in environments influenced by cement factories

    Source apportionment of inorganic and organic PM in the ambient air around a cement plant: Assessment of complementary tools

    No full text
    In this study, we analyzed the sources of ambient PM inorganic and organic components near a cement plant using fossil fuels as well as alternative fuels, such as sewage sludge and biomass. Source apportionment methodologies, i.e., principal component analysis (PCA) and multivariate curve resolution by alternating least squares (MCR-ALS), and carbon isotope analysis (δ13C) were used to determine the potential sources and their contributions. Four sources of PM10 main tracer compounds constituents were identified: Marine and secondary inorganic aerosol, cement plant/industrial, traffic and crustal. The contributions of those sources varied significantly depending on the period of the year. However, the inorganic tracer PM species in the area were mainly released by combustion sources, namely traffic and the activity of the cement plant, especially in winter months. The analyses of tracer organic compounds also indicated combustion sources, i.e., biomass burning and fossil fuel combustion, as the predominant contributors to ambient air PM (62, 59 and 69%, in PM10, PM2.5 and PM1, respectively). Organic dust was a significant source of PM10 (33%) while its contribution was found to be minor in the finest fractions (9 and 2% in PM2.5 and PM1, respectively). Results of δ13C corroborated a significant contribution of combustion sources, traffic or biomass fuel as well as a higher influence of mineral (calcite) powder in larger particles. © Taiwan Association for Aerosol Research.This study was financed by the Spanish Ministry of Economy and Competitiveness (MINECO), as part of the projects CTM2012-32778 (F. S?nchez-Sober?n received a doctoral scholarship as part of the project above mentioned), CTM2015-65303 and CGL2014-57215-C4-1-R, as well as by the Catalan Government, through the projects 2014SGR90 and 2014SGR1456. The authors also want to thank LAFARGE CEMENTOS SAU for their help during the sampling.Peer reviewe
    corecore