55 research outputs found

    COORDINATION IN CONFLICT SITUATIONS: A COMPARATIVE INVESTIGATION OF THE COORDINATION STRATEGIES THAT CHILDREN, CHIMPANZEES AND BONOBOS USE TO SOLVE SITUATIONS OF CONFLICT

    Get PDF
    In dieser Dissertation werden Strategien untersucht, mit denen sich Schimpansen, Bonobos und Kinder in Konfliktsituationen koordinieren. Sozial komplexe Tiere wie Menschen und Große Menschenaffen müssen ihr Verhalten regelmäßig untereinander koordinieren, um kooperative Ziele zu verwirklichen, die sie alleine nicht erreichen würden. Kollaboration, das heißt zusammenarbeiten für gemeinsame Ziele, stellt eine Lösung dar, wenn die Interessen der Individuen nicht im Widerspruch zueinander stehen. In manchen Situationen gehen allerdings Gelegenheiten zu kooperieren mit Gelegenheiten zu defektieren einher. In diesem Zusammenhang ist es wahrscheinlich, dass sowohl Große Menschenaffen als auch Menschen mit Interessenkonflikten konfrontiert sind, wenn sie entscheiden müssen, ob sie mit anderen Gruppenmitgliedern kooperieren. Wenn zum Beispiel eine Gruppe von Schimpansen eine Jagd beginnt, könnte es sein, dass manche Gruppenmitglieder es bevorzugen, zurückzubleiben und darauf zu warten, dass andere Schimpansen die Kosten der Jagd tragen. Indem wir Schimpansen, Bonobos und fünfjährige Kinder jeweils paarweise mit Interessenkonflikten konfrontieren, können wir die Strategien untersuchen, die diese Arten benutzen, um ihr Verhalten in Konfliktsituationen miteinander zu koordinieren und den Konflikt zu überwinden. Durch diesen Artvergleich gewinnen wir Einblicke in die Evolution der menschlichen Kooperation. Im ersten Kapitel der Dissertation präsentiere ich eine Studie, in der ich Schimpansen paarweise mit einer Konfliktsituation konfrontiert habe, die dem so genannten “Snowdrift Game“ entspricht (Studie 1). Dieses Modell aus der Spieltheorie wird dazu benutzt, zu untersuchen, ob Individuen miteinander kooperieren, wenn ihre Interessen miteinander im Konflikt stehen. In diesem Spiel können die zwei Spieler entweder kooperieren oder von der Arbeit des anderen profitieren, ohne selbst etwas beizutragen. Beiderseitige Kooperation wird höher belohnt als beiderseitiges Defektieren. Jedoch ist ein Kernelement dieses Spiels, dass es besser ist zu defektieren, wenn der Partner kooperiert, und zu kooperieren, wenn der Partner defektiert. Mit anderen Worten, es ist besser, das Gegenteil von dem zu tun, was der Partner macht. Um auf das Beispiel der Jagd bei den Schimpansen zurückzukommen: Wenn ein Gruppenmitglied die Jagd startet, können die anderen davon profitieren, ohne selbst aktiv teilzunehmen und die Kosten zu tragen. Wenn jedoch niemand die Jagd startet, hat niemand eine Chance an die Beute zu kommen. Das Dilemma in dieser Situation besteht für die Individuen darin, ob sie die Jagd starten sollen oder nicht, angenommen, dass alle verlieren, wenn niemand die Jagd einleitet. Um die Anreizstruktur dieses Spiels nachzubilden, habe ich Schimpansen paarweise mit einer beschwerten Plattform konfrontiert, auf der sich Belohnungen für beide Individuen befanden. Die Schimpansen mussten entscheiden, ob sie kollaborieren (das heißt, die Plattform zusammen heranziehen und die Kosten teilen) oder alleine ziehen und die Kosten für die Kooperation alleine tragen. Die Schimpansen hatten eine begrenzte Zeit zur Verfügung, um ihre Entscheidungen zu treffen, bevor ihre Belohnungen verschwanden. Wenn die Kosten für die Kooperation hoch waren, war es die beste Strategie für ein Individuum zu warten, bis der Partner zog und dann die Belohnung zu erhalten, was eine Maximierung der Vorteile bei einer gleichzeitigen Minimierung der Kosten darstellte. Die Leistung der Schimpansen bei hohen Kooperationskosten wurde mit ihrer Leistung in einer Bedingung mit wenig Gewicht verglichen, in der die Kooperationskosten minimal waren. Die Ergebnisse zeigten, dass Schimpansen erfolgreich ihr Verhalten miteinander koordinierten, um den Konflikt zu beseitigen, und dabei in den meisten Fällen die Belohnungen erhielten. Überraschenderweise kollaborierten Schimpansen häufiger, wenn die Kosten hoch waren, obwohl sie defektieren hätten können. Sie haben allerdings nicht nur kollaboriert, um die Belohnungen zu erhalten, sondern sie zeigten auch klare Anzeichen von strategischen Entscheidungen zur Kostenreduktion. Bei hohen Kosten warteten die Schimpansen länger, bevor sie am Seil zogen, was die Wahrscheinlichkeit reduzierte, alle Kosten alleine zu tragen. Bei einer genaueren Betrachtung der Kollaboration innerhalb der Paare zeigte sich, dass die Individuen ungleich viel Arbeit zum Ergebnis beitrugen. Dies deutet darauf hin, dass sie versucht haben, die Kosten zu reduzieren. Alles in allem weisen diese Ergebnisse darauf hin, dass Schimpansen dazu fähig sind, zwischen erfolgreicher Koordination (innerhalb eines Zeitlimits) und einer Beschränkung der eigenen Kosten auf ein Minimum abzuwägen. Im zweiten Kapitel der Dissertation präsentiere ich eine Studie, in der ich Bonobos und Schimpansen (Studie 2a) und Kinder (Studie 2b) jeweils paarweise mit einer zweiten Version des „Snowdrift Game“ konfrontiert habe. Im Gegensatz zu der vorherigen Version konnten die Individuen in dieser Version des Spiels nicht innerhalb der einzelnen Durchgänge kollaborieren. Jedoch konnten sie andere Strategien anwenden, um den Konflikt im Verlauf der Studie aufzulösen (zum Beispiel sich abwechseln über die Durchgänge hinweg). Ich habe die drei Arten mit einer rotierenden Plattform konfrontiert, die mit einer ungleichmäßigen Belohnungsstruktur versehen war. Zwei lösbare Seile waren an den beiden inneren Enden der Plattform befestigt. Die Seile verliefen gegenläufig zueinander und jeweils eins führte in die Räume der zwei Testteilnehmer. Jedes Individuum konnte an seinem Seil ziehen, um das innere Ende der Plattform in seine Richtung zu drehen, während gleichzeitig das äußere Ende der Plattform sich zum Partner bewegte. Wenn hingegen beide Individuen zur gleichen Zeit zogen, konnten sich die Seile von der Plattform lösen, so dass keiner einen Zugang zu den Belohnungen erhielt. In der „Snowdrift“-Bedingung war die bevorzugte Belohnung auf dem äußeren Ende positioniert. Sie konnte nur erreicht werden, wenn man darauf wartete, dass der Partner vor einem am Seil zog. Im Gegensatz dazu war die bevorzugte Belohnung in der kompetitiven Bedingung auf dem inneren Ende gelegen. In dieser zweiten Bedingung war es besser, vor dem Partner zu ziehen. Wie in der vorangegangenen Studie gab es für die Affen und Kinder ein Zeitlimit, in dem sie eine Entscheidung treffen mussten. Das Hauptziel dieser Studie war es, zu untersuchen, ob sich die Individuen in dieser Version des Spiels strategisch verhalten würden, das heißt, ob sie in der „Snowdrift“-Bedingung länger warten würden als in der kompetitiven Bedingung. Ein weiteres Ziel dieser Studie lag darin, die Strategien zu vergleichen, die die drei Arten zur Konfliktbewältigung anwendeten, und zu untersuchen, inwieweit Kommunikation eine bedeutsame Rolle in ihrem Vorgehen spielte. Die Ergebnisse der Studie zeigten, dass die drei Arten sich jeweils erfolgreich koordinierten und die Belohnungen in den meisten Fällen erhielten. In der kritischen Bedingung haben alle drei Arten länger mit dem Ziehen gewartet, was auf generelles Verständnis der Aufgabe hinweist. Eine Analyse ihrer Zieh-Strategien zeigt, dass Kinder über die Sitzungen hinweg gelernt haben länger zu warten, obwohl sie in den meisten Durchgängen letztlich gezogen haben. Im Gegensatz dazu neigten die Großen Menschenaffen dazu, eine Strategie anzuwenden, bei der nur ein Individuum die meiste Zeit über zog, sowohl bei der „Snowdrift“-Bedingung als auch bei der kompetitiven Bedingung. Jedoch wendeten nicht alle Menschenaffen diese Strategie an; einige Individuen verhielten sich klar strategisch und zogen signifikant häufiger in der kompetitiven als in der „Snowdrift“-Bedingung. Bei der Untersuchung der Frage, ob Affen und Kinder kommunikative Akte verwendeten, um die Koordination zu erleichtern, zeigte sich, dass nur die Kinder während der Aufgabe kommunizierten. Sie benutzten spezifische Arten verbaler Kommunikation, um die Entscheidung des Partners zu ihren eigenen Gunsten zu beeinflussen. Aufgrund der Strategien, die einige Große Menschenaffen im ersten Teil der Studie zeigten, habe ich einen Folgetest entwickelt, um die Entscheidungsstrategien von Schimpansen und Bonobos detaillierter zu untersuchen (Studie 3). Zu diesem Zweck habe ich die Tiere mit derselben rotierenden Plattform konfrontiert, die im ersten Teil der Studie verwendet wurde (die soziale Option), mit dem Zusatz einer sicheren Belohnung für die beiden Tiere (die nicht-soziale Option). Individuen konnten in diesem neuen Zusammenhang entscheiden, ob sie an dem sozialen Dilemma teilnehmen wollen oder ob sie die nicht-soziale Option wählen. Es war nun nicht mehr möglich, inaktiv zu bleiben. Ein wichtiger Punkt ist, dass die Menge der Belohnungen in der nicht-sozialen Option über die Sitzungen hinweg variierte. Meiner Hypothese nach würde das Hinzufügen der nicht-sozialen Option den Tieren erlauben, die Risiken besser einzuschätzen und strategisch zu wählen, nämlich abhängig von der Verteilung der Belohnungen und der voraussichtlichen Wahl des Partners. Durch meinen direkten Vergleich von Schimpansen und Bonobos konnte ich untersuchen, wie empfindsam die beiden Arten gegenüber einem sozialen Risiko sind in einer Situation, in der dieses Risiko durch das Wählen der nicht-sozialen Option umgangen werden konnte. Schließlich habe ich erforscht, ob Individuen das vorangegangene Verhalten ihres Partners zu ihrem eigenen Vorteil nutzen würden, um ihre Belohnungen zu maximieren. Die Ergebnisse dieser Studie zeigten, dass beide Menschenaffenarten sich koordiniert haben, um in den meisten Durchgängen an die Belohnungen zu kommen, und dass sie sich strategisch verhalten haben. Die Latenzzeiten, um an die Belohnungen zu kommen, verringerten sich, wenn die Menge der Belohnungen in der nicht-sozialen Option erhöht wurde. Bei der Wahl der sozialen Option warteten die Affen in der kritischen Bedingung immer noch länger, denn die bevorzugte Belohnung konnte nur erlangt werden, wenn der Partner vor einem zog. Beide Menschenaffenarten wählten die nicht-soziale Option häufiger, wenn sich das Verhältnis der Belohnungen in der nicht-sozialen und der sozialen Option zu Gunsten der nicht-sozialen Option erhöhte. Dies deutet darauf hin, dass Schimpansen und Bonobos keinen signifikanten Unterschied bezüglich ihrer Empfindsamkeit für soziales Risiko aufweisen. Abschließend habe ich herausgefunden, dass Große Menschenaffen ihre Entscheidungen so anpassen, dass sie die Belohnungen maximieren, indem sie kompetitiven Situationen ausweichen und mögliche Entscheidungen des Partners vorhersehen. Im letzten Kapitel der Dissertation präsentiere ich eine Studie, in der ich Schimpansen (Studie 4a) und Kinder (Studie 4b) jeweils paarweise mit einer Situation konfrontiert habe, die einem Gefangenen-Dilemma („Prisoners‘ Dilemma“) entspricht. Im Gegensatz zum „Snowdrift Game“ gelangt der Kooperierende beim Gefangenen-Dilemma bei einseitiger Kooperation zum schlechtesten Ergebnis; Individuen profitieren nicht von ihrem einseitigen Handeln. Um das Gefangenen-Dilemma abzubilden, habe ich die Paare mit einer vertikal beweglichen Plattform konfrontiert, die an den Enden mit Belohnungen versehen wurde. Jeder Teilnehmer konnte an einem Seil ziehen, das mit einer Seite der Plattform verbunden war. In der Gefangenen-Dilemma-Bedingung mussten die Teilnehmer warten, bis der Partner kooperiert (das heißt, an dem Seil zieht), um an die bevorzugte Belohnung zu kommen. Im Gegensatz dazu konnten die Belohnungen in der kompetitiven Bedingung nur erreicht werden, wenn man vor seinem Partner zog. Diese Bedingung diente als Kontrolle. Zudem konnten die beiden Individuen in beiden Bedingungen kollaborieren (das heißt, an den beiden Seilen zur gleichen Zeit ziehen) und ihre Belohnungen teilen. Wie bereits in den vorangegangenen Studien hatten die Individuen ein Zeitlimit, um an die Belohnungen auf der Plattform zu gelangen. Das Hauptziel dieser vergleichenden Studie war es, zu untersuchen, ob Schimpansen und Kinder sich strategisch verhalten würden, um den präsentierten Konflikt zu überwinden. Meiner Hypothese nach würden sich Individuen in diesem Kontext strategischer verhalten als in einer „Snowdrift“-Situation, weil einseitige Kooperation in diesem Fall zu keiner Belohnung für den Kooperierenden führte. Ein zweites Ziel der Studie war es, die Strategien zu erforschen, die Individuen zur Konfliktüberwindung benutzen, wenn eine Kollaboration möglich ist. Bei den Kindern war ich zudem an der Rolle interessiert, die Kommunikation bei der Aufrechterhaltung einer erfolgreichen Koordination in diesem Gefangenen-Dilemma-Szenario einnimmt. Die Befunde dieser vergleichenden Studie wiesen darauf hin, dass sich beide Arten substanziell voneinander darin unterschieden, welche Strategien sie zur Lösung der Aufgabe wählten. Schimpansen lernten sich über den Verlauf der Studie strategischer zu verhalten; in der kompetitiven Bedingung zogen sie sehr schnell im Vergleich zu der Gefangenen-Dilemma-Bedingung, in der ihre Latenzzeiten sich erhöhten. Doch letztlich zogen die Schimpansen auch in dieser Bedingung. Eine mögliche Erklärung für dieses hohe Maß an Kooperation könnte sein, dass die Schimpansen versucht haben, ihren Partner zum Ziehen zu verleiten. Dies verwandelte die Gefangenen-Dilemma-Durchgänge in kompetitive Durchgänge, wodurch die Wahrscheinlichkeit für die Schimpansen erhöht wurde, an die Belohnungen zu kommen. Kinder entwickelten eine effizientere Strategie, die darin bestand, sich abzuwechseln, um die Belohnungen alternierend zu erhalten. Interessanterweise haben sie diese Strategie in beiden Bedingungen angewandt. Diesem Befund entsprechend wurden sie schneller im Verlauf der Studie; sobald die Strategie sich abzuwechseln einmal etabliert war, haben sie weniger lange auf die Entscheidung des Partners gewartet. Schließlich habe ich herausgefunden, dass Kinder spezifische Kommunikationsarten benutzt haben, um sich mit ihren Partnern zu koordinieren. Durch diese strategische Kommunikation konnten sie ein hohes Maß an Kooperation in beiden Bedingungen aufrechterhalten. Durch die Verwendung des “Snowdrift”- und des Gefangenen-Dilemma-Modells konnten wir unser Verständnis bezüglich der Fähigkeiten von Schimpansen, Bonobos und Kindern vertiefen, sich in Situationen zu koordinieren, in denen Interessenkonflikte bestehen. Die Ergebnisse meiner Studien haben gezeigt, dass diese drei Arten verschiedene Konfliktsituationen erfolgreich lösen konnten, besonders, wenn ihr eigenes Handeln zu einem direkten Vorteil für sie führte. Zudem unterstützen die Ergebnisse die Annahme, dass Kinder einzigartige kognitive Fähigkeiten zur Koordination besitzen, was es ihnen erlaubt, effizientere Strategien zu entwickeln, um Konfliktsituationen zu bewältigen.:TABLE OF CONTENTS 1 INTRODUCTION 1 1.1 Theoretical background 2 Unilateral cooperation 3 Mutualistic collaboration 5 Conflicts of interest 6 1.2 Human cooperation in conflict situations 8 1.3 Great apes coordination in conflict situations 11 Field experiments 11 Experimental research 14 1.4 Models of cooperation and conflict 17 The Snowdrift game 19 The Prisoner’s Dilemma 21 1.5 Focus of the dissertation 23 Chapter 1 23 Chapter 2 23 Chapter 3 24 2 CHIMPANZEES COORDINATE IN A SNOWDRIFT TASK 27 2.1 Introduction 27 2.2 Material and Methods 30 Subjects 30 Material 30 Procedure 31 2.3 Results 34 2.4 General Discussion 37 3 CHIMPANZEES, BONOBOS AND CHILDREN SUCCESFULLY COORDINATE IN CONFLICT SITUATIONS 43 3.1 Introduction 43 3.2 Material and Methods: Study 2a 45 Subjects 45 Materials 45 Procedure 46 3.3 Results 49 Discussion 50 3.4 Material and Methods: Study 2b 50 Subjects 50 Materials 51 Procedure 52 3.5 Results 54 Discussion 56 3.6 Material and Methods: Study 3 57 Subjects 57 Materials 57 Procedure 58 3.7 Results 63 Discussion 66 3.8 General Discussion 67 4 CHIMPANZEES AND CHILDREN COOPERATE IN A PRISONER’S DILEMMA 71 4.1 Introduction 71 4.2 Material and Methods: Study 4a 74 Subjects 74 Materials 74 Procedure 76 4.3 Results 79 Discussion 82 4.4 Material and Methods: Study 4b 82 Subjects 82 Materials 82 Procedure 83 4.5 Results 86 Discussion 89 4.6 General Discussion 90 5 GENERAL DISCUSSION 95 5.1 Great ape coordination under conflict 95 Discussion of the findings 96 Findings in the context of apes’ experimental studies 99 Findings in the context of apes’ field observations 101 Findings in the context of animal cooperation 102 Methodological considerations 103 5.2 Children’s coordination under conflict 104 Discussion of the findings 105 Findings in the context of human cooperation 107 Insights into the evolution of human cooperation 108 5.3 Conclusion 109 REFERENCES 111 APPENDICES 125 Chapter 1 Study 1 126 Chapter 2 Studies 2a and 2b 134 Chapter 2 Study 3 141 Chapter 3 Studies 4a and 4b 149 BIBLIOGRAPHISCHE DARSTELLUNG 158 SUMMARY 159 ZUSAMMENFASSUNG 163 CURRICULUM VITAE 168 SCIENTIFIC PUBLICATIONS AND PRESENTATIONS 169 ERKLÄRUNG GEMÄß §8(2) DER PROMOTIONSORDNUNG 171This dissertation investigates the strategies that chimpanzees, bonobos and children use to coordinate in situations of conflict. Socially complex animals such as humans and great apes regularly need to coordinate their actions to achieve cooperative goals not attainable individually. Collaboration, acting together for mutual goals, is a solution when individuals’ interests do not compete. However, in some situations, opportunities to cooperate come together with opportunities to defect. In that context, great apes and humans are likely to face conflicts of interest when they need to decide whether or not to cooperate with other group members. For instance, when chimpanzees initiate hunts in groups, some members may prefer to lag behind and wait for other chimpanzees to pay the costs related to the hunt. By presenting pairs of chimpanzees, bonobos and 5-year old children with situations of conflicting interests we can explore the strategies that these species use to coordinate their actions to overcome those conflicts in an attempt to shed light on the evolution of human cooperation. In the first chapter of this thesis, I present pairs of chimpanzees with a conflict situation in the form of a Snowdrift game, a game theoretical model used to explore whether individuals cooperate when their interests compete (Study 1). In this game, both players can either cooperate or free-ride. Mutual cooperation results in a better reward than mutual defection. However, the key feature of this game is that it is better to defect if your partner cooperates, but better to cooperate if your partner defects; in other words, it is better to do the opposite of your partner. Returning to the example of chimpanzee hunting, if a group member starts a hunt, others can benefit without actively participating and incurring the costs. However, if no one starts the hunt, they all lose the chance to get the prey. The dilemma faced by individuals in such situations is thus whether to initiate the action or not, given that if no one initiates, everyone loses out. To recreate the payoff structure of this game I presented pairs of chimpanzees with a weighted tray containing rewards for both individuals. Subjects needed to decide whether to collaborate (i.e. pull the tray together and share the costs) or pull alone and unilaterally pay the burden of cooperation. Chimpanzees had a limited amount of time to make their decisions before the rewards disappeared. The best strategy for an individual was to wait for a partner to pull and obtain the rewards when cooperative costs were high; maximizing benefits while reducing costs. Chimpanzees’ performance when cooperative costs were high was compared to their performance in a low weight condition in which the costs to cooperate were minimum. The findings showed that chimpanzees successfully coordinated their actions to overcome the conflict, obtaining the rewards the majority of times. Surprisingly, chimpanzees collaborated more often when the costs were high even though they had the opportunity to defect. However, they did not just collaborate to obtain the rewards; they showed clear signs of strategic decision-making to reduce costs. When costs were high, chimpanzees waited longer to pull, reducing the likelihood of incurring all the costs unilaterally. Moreover, when I investigated in more detail how they collaborated, I found that pairs of chimpanzees contributed unequal efforts, suggesting that they tried to minimize costs. In all, these results suggest that chimpanzees were able to manage the trade-off between successful coordination (within the time limits) and minimizing costs. In the second chapter of the dissertation I presented pairs of bonobos and chimpanzees (Study 2a), and children (Study 2b) with a second version of the Snowdrift game. In this version of the game, in contrast to the previous one, subjects could not collaborate within trials but they could use other strategies to overcome the conflict over the course of the study (e.g. taking-turns over trials). I presented the three species with a rotatory tray baited with an unequal reward distribution. Two detachable ropes were connected to the interior end of the tray. The ropes were oriented in opposite directions and each fed into one subjects’ room. Each individual could pull from their rope and move the interior end of the tray towards him while the exterior end moved towards the partner. Yet, if both individuals pulled at the same time, the ropes could detach from the tray, preventing individuals from accessing the rewards. In the Snowdrift condition, the preferred reward distribution was baited on the interior end and it could only be obtained by waiting for the partner to pull. In contrast, in a competitive condition, the reward distribution was chang

    Do 7-year-old children understand social leverage?

    Get PDF
    Individuals with an advantageous position during a negotiation possess leverage over their partners. Several studies with adults have investigated how leverage can influence the coordination strategies of individuals when conflicts of interest arise. In this study, we explored how pairs of 7-year-old children solved a coordination game (based on the Snowdrift scenario) when one child had leverage over the other child. We presented a social dilemma in the form of an unequal reward distribution on a rotating tray. The rotating tray could be accessed by both children. The child who waited longer to act received the best outcome, but if both children waited too long, they would lose the rewards. In addition, one child could forgo the access to the rotating tray for an alternative option—the leverage. Although children rarely used their leverage strategically, children with access to the alternative were less likely to play the social dilemma, especially when their leverage was larger. Furthermore, children waited longer to act as the leverage decreased. Finally, children almost never failed to coordinate. The results hint to a trade-off between maximizing benefits while maintaining long-term collaboration in complex scenarios where strategies such as turn taking are hard to implement.PostprintPeer reviewe

    Studying Great Apes and Cultural Diversity to Understand the Human Mind

    Get PDF
    Psychologists want to understand how the human mind is extraordinary among animal minds and where the unique aspects of human minds and behaviors come from. To build scientific understanding of human minds, we must study the wide range of humans across cultures, to know what all humans have in common and which aspects of human minds are diverse. However, this is not enough-studying humans across cultures tells us how humans think and act, not how they are unique among animals. To understand how humans are similar and dierent from other animals, we must study other animals too, especially our close primate relatives, the great apes, who have minds that are similar to ours in many, but not all, ways. So, to understand human minds and behaviors, researchers should study humans and non-humans at a scale that allows us to explore the origins of the similarities and dierences of minds and behaviors across our world today

    Studying Great Apes and Cultural Diversity to Understand the Human Mind

    Get PDF
    Psychologists want to understand how the human mind is extraordinary among animal minds and where the unique aspects of human minds and behaviors come from. To build scientific understanding of human minds, we must study the wide range of humans across cultures, to know what all humans have in common and which aspects of human minds are diverse. However, this is not enough-studying humans across cultures tells us how humans think and act, not how they are unique among animals. To understand how humans are similar and dierent from other animals, we must study other animals too, especially our close primate relatives, the great apes, who have minds that are similar to ours in many, but not all, ways. So, to understand human minds and behaviors, researchers should study humans and non-humans at a scale that allows us to explore the origins of the similarities and dierences of minds and behaviors across our world today

    Disentangling great apes’ decoy-effect bias in a food choice task

    Get PDF
    The project was supported by an ERCSynergy grant SOMICS (grant number 609819).The decoy effect is a violation of rationality that occurs when the relative preference between two target options changes with the addition of a third option, called the decoy, that is no better than the target options but worse than one of the options on one attribute. The presence of the decoy increases the chance that the option that dominates it on this attribute is chosen over the other target option. The current study tested decoy effects with great apes’ food preferences. We presented apes with two target items, grape and banana, and a third item, the decoy, which was either a smaller grape or a smaller piece of banana. We found that apes’ decisions were not influenced by the presence of a decoy. In general, apes did not increase their choices in favor of the target item that dominated the decoy. This would indicate that great apes are not vulnerable to the cognitive biases that cause decoy effects in humans, at least in cases where choice is between two different types of food. We discuss what can be concluded about the psychological causes of human irrational choices and their evolutionary origin.Publisher PDFPeer reviewe

    Chimpanzees engage in competitive altruism in a triadic ultimatum game

    Get PDF
    Partner choice promotes competition among individuals to be selected as a cooperative partner, a phenomenon referred to as competitive altruism. We explored whether chimpanzees engage in competitive altruism in a triadic Ultimatum Game where two proposers can send offers simultaneously or consecutively to a responder who can only accept one of the two competing offers. In a dyadic control condition only one proposer at a time could send an offer to the responder. Chimpanzees increased their offers across trials in the competitive triadic, but not in the dyadic control condition. Chimpanzees also increased their offers after being rejected in previous triadic trials. Furthermore, we found that chimpanzees, under specific conditions, outcompete first proposers in triadic consecutive trials before the responder could choose which offer to accept by offering more than what is expected if they acted randomly or simply offered the smallest possible amount. These results suggest that competitive altruism in chimpanzees did not emerge just as a by-product of them trying to increase over previous losses. Chimpanzees might consider how others’ interactions affect their outcomes and engage in strategies to maximize their chances of being selected as cooperative partners

    Chimpanzees’ understanding of social leverage

    Get PDF
    Social primates can influence others through the control of resources. For instance, dominant male chimpanzees might allow subordinates access to mate with females in exchange for social support. However, little is known about how chimpanzees strategically use a position of leverage to maximize their own benefits. We address this question by presenting dyads of captive chimpanzee (N = 6) with a task resulting in an unequal reward distribution. To gain the higher reward each individual should wait for their partner to act. In addition, one participant had leverage: access to an alternative secure reward. By varying the presence and value of the leverage we tested whether individuals used it strategically (e.g. by waiting longer for partners to act when they had leverage in the form of alternatives). Additionally, non-social controls served to show if chimpanzees understood the social dilemma. We measured the likelihood to choose the leverage and their latencies to act. The final decision made by the chimpanzees did not differ as a function of condition (test versus non-social control) or the value of the leverage, but they did wait longer to act when the leverage was smaller—particularly in test (versus non-social control) trials suggesting that they understood the conflict of interest involved. The chimpanzees thus recognized the existence of social leverage, but did not use it strategically to maximize their rewards.Publisher PDFPeer reviewe

    Assessing the rainfall measurements across Mexico City using disdrometer network and their comparison respect to tipping bucket rain gauge network

    Full text link
    [EN] This work represents a contribution to the evaluation of the conditions of precipitation observation networks in an urban area, based on the comparison between a network of laser optical disdrometer (LOD) sensors and a network of tipping bucket rain gauges (TB) in Mexico City. In the methodology, 9 LOD stations and 16 TB stations were selected, which were compared in two ways: first,from the total accumulation of precipitation over three years and second, by storm events. The results indicate that the analysis by storm events is more representative than comparing the accumulated precipitation. The measurements are acceptable, as these were checked from linear correlations. It was also determined that the number of events and the distance between the stations contribute to the correlation of the measurements. It is desirable that the methodology can be applied in the periodic quality control of measurements (calibration) and be part of the good practices for the measurement of the urban hydrological cycle at the local level.[ES] Este trabajo representa una contribución para evaluación de las condiciones de las redes de observación de la precipitación en un área urbana, a partir de la comparación entre una red de sensores de disdrómetros ópticos láser (DOL) y una red de pluviómetros de balancín (PB) en la Ciudad de México. En la metodología se seleccionaron 9 estaciones DOL y 16 estaciones PB, las cuales secompararon de dos formas: primero, a partir de la acumulación total de precipitación durante tres años y segundo, por eventos de tormenta. Los resultados indican, que el análisis por eventos de tormenta es más representativo que comparando la precipitaciónacumulada. Las mediciones son aceptables, ya que estas se comprobaron a partir de correlaciones lineales. Asimismo, se determinó que el número de eventos y la distancia entre las estaciones contribuyen en la correlación de las mediciones. Es deseable que la metodología se aplique en el control de calidad periódico de las mediciones (calibración) y sea parte de las buenas prácticas parala medición del ciclo hidrológico urbano a escala local.La autora principal del artículo agradece el apoyo económico recibido por parte del programa de becas de posgrados del Consejo Nacional de Ciencia y Tecnología. También agradece el apoyo del Instituto de Ingeniería de la UNAM y de la Secretaría de Educación, Ciencia, Tecnología e Innovación de la Ciudad de México.Amaro-Loza, A.; Pedrozo-Acuña, A.; Sánchez-Huerta, A.; Sánchez-Vargas, C.; Vergara-Alcaraz, EA. (2022). Evaluación de las mediciones de lluvia en la Ciudad de México utilizando la red de disdrómetros y su comparación con respecto a la red de pluviómetros de balancín. Ingeniería del Agua. 26(2):91-105. https://doi.org/10.4995/ia.2022.172179110526

    Overexpression of AtGRDP2, a novel glycine-rich domain protein, accelerates plant growth and improves stress tolerance

    Get PDF
    "Proteins with glycine-rich signatures have been reported in a wide variety of organisms including plants, mammalians, fungi, and bacteria. Plant glycine-rich protein genes exhibit developmental and tissue-specific expression patterns. Herein, we present the characterization of the AtGRDP2 gene using Arabidopsis null and knockdown mutants and, Arabidopsis and lettuce over-expression lines. AtGRDP2 encodes a short glycine-rich domain protein, containing a DUF1399 domain and a putative RNA recognition motif (RRM). AtGRDP2 transcript is mainly expressed in Arabidopsis floral organs, and its deregulation in Arabidopsis Atgrdp2 mutants and 35S::AtGRDP2 over-expression lines produces alterations in development. The 35S::AtGRDP2 over-expression lines grow faster than the WT, while the Atgrdp2 mutants have a delay in growth and development. The over-expression lines accumulate higher levels of indole-3-acetic acid and, have alterations in the expression pattern of ARF6, ARF8, and miR167 regulators of floral development and auxin signaling. Under salt stress conditions, 35S::AtGRDP2 over-expression lines displayed higher tolerance and increased expression of stress marker genes. Likewise, transgenic lettuce plants over-expressing the AtGRDP2 gene manifest increased growth rate and early flowering time. Our data reveal an important role for AtGRDP2 in Arabidopsis development and stress response, and suggest a connection between AtGRDP2 and auxin signaling.

    Concurrent validity of supraclavicular skin temperature measured with iButtons and infrared thermography as a surrogate marker of brown adipose tissue

    Get PDF
    We are grateful to Ms. Carmen Sainz-Quinn for assistance with the English language. We are grateful to Alberto Quesada-Aranda for helping with the development of the Temperatus software (Free trial in http://profth.ugr.es/temperatus).This study is part of a Ph.D. Thesis conducted in the Biomedicine Doctoral Studies of the University of Granada, Spain.Brown adipose tissue (BAT) thermogenic activity is commonly assessed with a positron emission tomography with computed tomography scan (PET/CT). This technique has several limitations and alternative techniques are needed. Supraclavicular skin temperature measured with iButtons and infrared thermography (IRT) has been proposed as an indirect marker of BAT activity. We studied the concurrent validity of skin temperature measured with iButtons vs. IRT and the association of supraclavicular skin temperature measured with iButtons and IRT with BAT. We measured skin temperature upon a shivering threshold test with iButtons and IRT in 6 different regions in 12 participants (n = 2 men). On a separate day, we determined supraclavicular skin temperature with an iButton and IRT after 2 h of a personalized cooling protocol. Thereafter, we quantified BAT volume and activity by PET/CT. We observed that the absolute differences between the devices were statistically different from 0 (all P < 0.05) after the shivering threshold test. Moreover, we did not find any association between supraclavicular skin temperature measured with iButtons or IRT and BAT 18F-FDG activity (r = −0.213; P = 0.530 and r = −0.079; P = 0.817). However, we observed a negative association of supraclavicular skin temperature measured by IRT with BAT 18F-FDG volume (r = −0.764; P = 0.006), but not with supraclavicular skin temperature measured with iButtons (r = −0.546; P = 0.082). In light of these results, we concluded that the measurement of skin temperature obtained by iButtons and IRT are not comparable. Furthermore, it seems that supraclavicular skin temperature is not associated with BAT 18F-FDG activity, but it appears to be negatively associated with BAT 18F-FDG volume in the case of IRT.This study was supported by the Spanish Ministry of Economy and Competitiveness via the Fondo de Investigación Sanitaria del Instituto de Salud Carlos III (PI13/01393), Retos de la Sociedad (DEP2016-79512-R), PTA 12264-I, and European Regional Development Fund (ERDF), the Spanish Ministry of Education (FPU 13/04365, FPU14/04172, FPU15/05337, and FPU15/04059), by the Spanish Ministry of Science and Innovation-MINECO (RYC-2014-16938), the Fundación Iberoamericana de Nutrición (FINUT), the Redes Temáticas de Investigación Cooperativa RETIC (Red SAMID RD16/0022), the AstraZeneca HealthCare Foundation, the University of Granada Plan Propio de Investigación 2016 -Excellence actions: Unit of Excellence on Exercise and Health (UCEES) - and Plan Propio de Investigación 2018 - Programa Contratos-Puente, and the Junta de Andalucía, Consejería de Conocimiento, Investigación y Universidades (ERDF, ref. SOMM17/6107/UGR). This study is part of a Ph.D
    corecore