746 research outputs found

    Desarrollo de la Red Aerobiológica de Castilla y León (RACYL)

    Get PDF
    XV lnternational A.P.L.E. Symposium of Palynolog

    Processing and mechanical properties of novel biodegradable poly-lactic acid/Zn 3D printed scaffolds for application in tissue regeneration

    Full text link
    The feasibility to manufacture scaffolds of poly-lactic acid reinforced with Zn particles by fused filament fabrication is demonstrated for the first time. Filaments of 2.85 mm in diameter of PLA reinforced with different weight fractions of μ\mum-sized Zn - 1 wt. \% Mg alloy particles (in the range 3.5 to 17.5 wt. \%) were manufactured by a double extrusion in method in which standard extrusion is followed by a precision extrusion in a filament-maker machine. Filaments with constant diameter, negligible porosity and a homogeneous reinforcement distribution were obtained for Zn weight fractions of up to 10.5\%. It was found that the presence of Zn particles led to limited changes in the physico-chemical properties of the PLA that did not affect the window temperature for 3D printing nor the melt flow index. Thus, porous scaffolds could be manufactured by fused filament fabrication at 190\textdegree C with poly-lactic acid/Zn composites containing 3.5 and 7 wt. \% of Zn and at 170\textdegree C when the Zn content was 10.5 wt. \% with excellent dimensional accuracy and mechanical properties

    Apoptotic microtubules delimit an active caspase free area in the cellular cortex during the execution phase of apoptosis

    Get PDF
    Apoptotic microtubule network (AMN) is organized during apoptosis, forming a cortical structure beneath plasma membrane, which has an important role in preserving cell morphology and plasma membrane permeability. The aim of this study was to examine the role of AMN in maintaining plasma membrane integrity during the execution phase of apoptosis. We demonstrated in camptothecin-induced apoptosis in H460 cells that AMN delimits an active caspase free area beneath plasma membrane that permits the preservation of cellular cortex and transmembrane proteins. AMN depolymerization in apoptotic cells by a short exposure to colchicine allowed active caspases to reach the cellular cortex and cleave many key proteins involved in plasma membrane structural support, cell adhesion and ionic homeostasis. Cleavage of cellular cortex and plasma membrane proteins, such as a-spectrin, paxilin, focal adhesion kinase (FAK), E-cadherin and integrin subunit b4 was associated with cell collapse and cell detachment. Otherwise, cleavage-mediated inactivation of calcium ATPase pump (PMCA-4) and Naþ/Ca2þ exchanger (NCX) involved in cell calcium extrusion resulted in calcium overload. Furthermore, cleavage of Naþ/Kþ pump subunit b was associated with altered sodium homeostasis. Cleavage of cell cortex and plasma membrane proteins in apoptotic cells after AMN depolymerization increased plasma permeability, ionic imbalance and bioenergetic collapse, leading apoptotic cells to secondary necrosis. The essential role of caspase-mediated cleavage in this process was demonstrated because the concomitant addition of colchicine that induces AMN depolymerization and the pan-caspase inhibitor z-VAD avoided the cleavage of cortical and plasma membrane proteins and prevented apoptotic cells to undergo secondary necrosis. Furthermore, the presence of AMN was also critical for proper phosphatidylserine externalization and apoptotic cell clearance by macrophages. These results indicate that AMN is essential to preserve an active caspase free area in the cellular cortex of apoptotic cells that allows plasma membrane integrity during the execution phase of apoptosis

    Experiencia inicial en prostatectomía radical laparoscópica con el dispositivo de acceso laparoscópico umbilical Single-Incision Laparoscopic Surgery Port

    Get PDF
    Since 2007, various urological procedures have been performed with laparoendoscopic single-site surgery (LESS surgery), including nephrectomy, pyeloplasty, simple prostatectomy and, with the refinement of laparoscopic instrumentation, radical prostatectomy. This paper reports our initial experience in radical prostatectomy using the SILS Port from Covidiem and two lateral 5-mm trocars for triangulation. The SILS Port allows for accurate, simple insertion through a Hadson incision. The flexible port accommodates three 5-mm cannulas or two 5-mm cannulas and a 12-mm port for easier instrument exchange through a single incision. This approach decreases morbidity from bleeding, hernia and/or internal organ damage and improves cosmetic. One-port single-incision laparoscopy is part of the natural development of minimally invasive surgery. Future research is required to assess the intraoperative and postoperative benefits of LESS surgery as compared to standard laparoscopy

    Antigenic and molecular characterisation of Border disease virus associated with high mortality in lambs in Spain

    Get PDF
    Border disease virus (BDV) causes congenital disorders in sheep and results in severe, but underestimated, economic losses worldwide. However, information about BDV strains affecting several ruminants worldwide is scarce. Therefore, antigenic and genetic classification of isolates from different geographical regions is important to enhance the knowledge of the epidemiology of BDV. Five pestiviruses isolated from lambs in an epidemic outbreak with an unusually high mortality in Spain in 1997 were characterised antigenically with a panel of monoclonal antibodies and genetically by sequencing within the 50 untranslated (50UTR) region of the genome. All the isolates were classified as BDV and showed a high homology with the Aveyron strain (Av), which was associated with an epidemic reported in sheep from the Aveyron region of France in 1984. Classification of the isolates from this study provides valuable information on the molecular epidemiology of BDV

    A New Set of in Silico Tools to Support the Interpretation of ATM Missense Variants Using Graphical Analysis

    Full text link
    Establishing the pathogenic nature of variants in ATM, a gene associated with breast cancer and other hereditary cancers, is crucial for providing patients with adequate care. Unfortunately, achieving good variant classification is still difficult. To address this challenge, we extended the range of in silico tools with a series of graphical tools devised for the analysis of computational evidence by health care professionals. We propose a family of fast and easy-to-use graphical representations in which the impact of a variant is considered relative to other pathogenic and benign variants. To illustrate their value, the representations are applied to three problems in variant interpretation. The assessment of computational pathogenicity predictions showed that the graphics provide an intuitive view of pre-diction reliability, complementing and extending conventional numerical reliability indexes. When applied to variant of unknown significance populations, the representations shed light on the nature of these variants and can be used to prioritize variants of unknown significance for further studies. In a third application, the graphics were used to compare the two versions of the ATM-adapted American College of Medical Genetics and Genomics and Association for Molecular Pathology guidelines, obtaining valuable information on their relative virtues and weaknesses. Finally, a server [ATMision (ATM missense in silico interpretation online)] was generated for users to apply these representations in their variant interpretation problems, to check the ATM-adapted guidelines' criteria for computational evidence on their variant(s) and access different sources of information. (J Mol Diagn 2024, 26: 17-28; https://doi.org/10.1016/j.jmoldx.2023.09.009

    The QUIJOTE experiment: project overview and first results

    Full text link
    QUIJOTE (Q-U-I JOint TEnerife) is a new polarimeter aimed to characterize the polarization of the Cosmic Microwave Background and other Galactic and extragalactic signals at medium and large angular scales in the frequency range 10-40 GHz. The multi-frequency (10-20~GHz) instrument, mounted on the first QUIJOTE telescope, saw first light on November 2012 from the Teide Observatory (2400~m a.s.l). During 2014 the second telescope has been installed at this observatory. A second instrument at 30~GHz will be ready for commissioning at this telescope during summer 2015, and a third additional instrument at 40~GHz is now being developed. These instruments will have nominal sensitivities to detect the B-mode polarization due to the primordial gravitational-wave component if the tensor-to-scalar ratio is larger than r=0.05.Comment: To appear in "Highlights of Spanish Astrophysics VIII", Proceedings of the XI Scientific Meeting of the Spanish Astronomical Society, Teruel, Spain (2014

    QUIJOTE-CMB experiment: a technical overview

    Get PDF
    The QUIJOTE-CMB experiment (Q-U-I JOint TEnerife CMB experiment) is an ambitious project to obtain polarization measurements of the sky microwave emission in the 10 to 47 GHz range. With this aim, a pair of 2,5m telescopes and three instruments are being sited at the Teide Observatory, in Tenerife (Canary Islands, Spain). The first telescope and the first instrument (the MFI: Multi Frequency Instrument) are both already operating in the band from 10 to 20 GHz, since November 2012. The second telescope and the second instrument (TGI: Thirty GHz instrument) is planned to be in commissioning by the end of summer 2014, covering the range of 26 to 36 GHz. After that, a third instrument named FGI (Forty GHz instrument) will be designed and manufactured to complete the sky survey in the frequency range from 37 to 47 GHz. In this paper we present an overview of the whole project current status, from the technical point of view
    corecore