128 research outputs found

    Dynamic Modelling and Techno-Economic Assessment of a Compressed Heat Energy Storage System: Application in a 26-MW Wind Farm in Spain

    Full text link
    [EN] One of the main challenges for a further integration of renewable energy sources in the electricity grid is the development of large-scale energy storage systems to overcome their intermittency. This paper presents the concept named CHEST (Compressed Heat Energy STorage), in which the excess electricity is employed to increase the temperature of a heat source by means of a high-temperature heat pump. This heat is stored in a combination of latent and sensible heat storage systems. Later, the stored heat is used to drive an organic Rankine cycle, and hereby to produce electricity when needed. A novel application of this storage system is presented by exploring its potential integration in the Spanish technical constraints electricity market. A detailed dynamic model of the proposed CHEST system was developed and applied to a case study of a 26-MW wind power plant in Spain. Different capacities of the storage system were assessed for the case under study. The results show that roundtrip efficiencies above 90% can be achieved in all the simulated scenarios and that the CHEST system can provide from 1% to 20% of the total energy contribution of the power plant, depending on its size. The CHEST concept could be economically feasible if its capital expenditure (CAPEX) ranges between 200 and 650 k€/MWThis work has been partially funded by the grant agreement No. 764042 (CHESTER project) of the European Union's Horizon 2020 research and innovation program.Sánchez Canales, V.; Payá-Herrero, J.; Corberán, JM.; Hassan, A. (2020). Dynamic Modelling and Techno-Economic Assessment of a Compressed Heat Energy Storage System: Application in a 26-MW Wind Farm in Spain. Energies. 13(18):1-18. https://doi.org/10.3390/en13184739S1181318Nikolaou, T., Stavrakakis, G. S., & Tsamoudalis, K. (2020). Modeling and Optimal Dimensioning of a Pumped Hydro Energy Storage System for the Exploitation of the Rejected Wind Energy in the Non-Interconnected Electrical Power System of the Crete Island, Greece. Energies, 13(11), 2705. doi:10.3390/en13112705Shi, J., Yang, Y., & Deng, Z. (2009). A reliability growth model for 300 MW pumped-storage power units. Frontiers of Energy and Power Engineering in China, 3(3), 337-340. doi:10.1007/s11708-009-0032-yArgyrou, M. C., Christodoulides, P., & Kalogirou, S. A. (2018). Energy storage for electricity generation and related processes: Technologies appraisal and grid scale applications. Renewable and Sustainable Energy Reviews, 94, 804-821. doi:10.1016/j.rser.2018.06.044Jockenhöfer, H., Steinmann, W.-D., & Bauer, D. (2018). Detailed numerical investigation of a pumped thermal energy storage with low temperature heat integration. Energy, 145, 665-676. doi:10.1016/j.energy.2017.12.087Steinmann, W.-D. (2017). Thermo-mechanical concepts for bulk energy storage. Renewable and Sustainable Energy Reviews, 75, 205-219. doi:10.1016/j.rser.2016.10.065Thess, A. (2013). Thermodynamic Efficiency of Pumped Heat Electricity Storage. Physical Review Letters, 111(11). doi:10.1103/physrevlett.111.110602Guo, J., Cai, L., Chen, J., & Zhou, Y. (2016). Performance optimization and comparison of pumped thermal and pumped cryogenic electricity storage systems. Energy, 106, 260-269. doi:10.1016/j.energy.2016.03.053Attonaty, K., Stouffs, P., Pouvreau, J., Oriol, J., & Deydier, A. (2019). Thermodynamic analysis of a 200 MWh electricity storage system based on high temperature thermal energy storage. Energy, 172, 1132-1143. doi:10.1016/j.energy.2019.01.153Frate, G. F., Antonelli, M., & Desideri, U. (2017). A novel Pumped Thermal Electricity Storage (PTES) system with thermal integration. Applied Thermal Engineering, 121, 1051-1058. doi:10.1016/j.applthermaleng.2017.04.127Mateu-Royo, C., Mota-Babiloni, A., Navarro-Esbrí, J., Peris, B., Molés, F., & Amat-Albuixech, M. (2019). Multi-objective optimization of a novel reversible High-Temperature Heat Pump-Organic Rankine Cycle (HTHP-ORC) for industrial low-grade waste heat recovery. Energy Conversion and Management, 197, 111908. doi:10.1016/j.enconman.2019.111908Benato, A. (2017). Performance and cost evaluation of an innovative Pumped Thermal Electricity Storage power system. Energy, 138, 419-436. doi:10.1016/j.energy.2017.07.066Benato, A., & Stoppato, A. (2019). Integrated Thermal Electricity Storage System: Energetic and cost performance. Energy Conversion and Management, 197, 111833. doi:10.1016/j.enconman.2019.111833Maximov, S., Harrison, G., & Friedrich, D. (2019). Long Term Impact of Grid Level Energy Storage on Renewable Energy Penetration and Emissions in the Chilean Electric System. Energies, 12(6), 1070. doi:10.3390/en12061070Steinmann, W. D. (2014). The CHEST (Compressed Heat Energy STorage) concept for facility scale thermo mechanical energy storage. Energy, 69, 543-552. doi:10.1016/j.energy.2014.03.049Hu, B., Wu, D., Wang, L. W., & Wang, R. Z. (2017). Exergy analysis of R1234ze(Z) as high temperature heat pump working fluid with multi-stage compression. Frontiers in Energy, 11(4), 493-502. doi:10.1007/s11708-017-0510-6He, Y.-L., Wang, R., Roskilly, A. P., & Li, P. (2017). Efficient use of waste heat and solar energy: Technologies of cooling, heating, power generation and heat transfer. Frontiers in Energy, 11(4), 411-413. doi:10.1007/s11708-017-0525-zHassan, A. H., O’Donoghue, L., Sánchez-Canales, V., Corberán, J. M., Payá, J., & Jockenhöfer, H. (2020). Thermodynamic analysis of high-temperature pumped thermal energy storage systems: Refrigerant selection, performance and limitations. Energy Reports, 6, 147-159. doi:10.1016/j.egyr.2020.05.010Steinmann, W.-D., Bauer, D., Jockenhöfer, H., & Johnson, M. (2019). Pumped thermal energy storage (PTES) as smart sector-coupling technology for heat and electricity. Energy, 183, 185-190. doi:10.1016/j.energy.2019.06.058Pereira da Cunha, J., & Eames, P. (2016). Thermal energy storage for low and medium temperature applications using phase change materials – A review. Applied Energy, 177, 227-238. doi:10.1016/j.apenergy.2016.05.097Cecchinato, L. (2010). Part load efficiency of packaged air-cooled water chillers with inverter driven scroll compressors. Energy Conversion and Management, 51(7), 1500-1509. doi:10.1016/j.enconman.2010.02.008The Turbocor Family of Compressors Model TT300, Danfoss TURBOCOR. Datasheetwww.turbocor.com,USAPalkowski, C., Zottl, A., Malenkovic, I., & Simo, A. (2019). Fixing Efficiency Values by Unfixing Compressor Speed: Dynamic Test Method for Heat Pumps. Energies, 12(6), 1045. doi:10.3390/en12061045Estadísticas del Sistema Eléctrico | Red Eléctrica de Españahttps://www.ree.es/es/estadisticas-del-sistema-electrico/3015/3001OMIP Operador del Mercado Ibérico de Energía—Polo Portuguéshttps://www.omip.pt/El Mercado de Restricciones Técnicashttp://mifacturadeluz.com/mercado-de-restricciones-tecnicas/Puerto Escandón (España)—Parques eólicos—Acceso en línea—The Wind Powerhttps://www.thewindpower.net/windfarm_es_2253_puerto-escandon.phpFederico Bava DS D2.1 Case studies: User Requirements and Boundary Conditions Definition. CHESTERhttps://www.chester-project.eu/wp-content/uploads/2018/11/CHESTER_D2.1_Case-Studies_v5.0.pdfEstado actual de la energía termosolar (CSP)—HELIONOTICIAShttp://helionoticias.es/estado-actual-de-la-energia-termosolar-csp/Gallo, A. B., Simões-Moreira, J. R., Costa, H. K. M., Santos, M. M., & Moutinho dos Santos, E. (2016). Energy storage in the energy transition context: A technology review. Renewable and Sustainable Energy Reviews, 65, 800-822. doi:10.1016/j.rser.2016.07.028Smallbone, A., Jülch, V., Wardle, R., & Roskilly, A. P. (2017). Levelised Cost of Storage for Pumped Heat Energy Storage in comparison with other energy storage technologies. Energy Conversion and Management, 152, 221-228. doi:10.1016/j.enconman.2017.09.04

    Ectopic expression of the AtCDF1 transcription factor in potato enhances tuber starch and amino acid contents and yield under open field conditions

    Get PDF
    Introduction Cycling Dof transcription factors (CDFs) have been involved in different aspects of plant growth and development. In Arabidopsis and tomato, one member of this family (CDF1) has recently been associated with the regulation of primary metabolism and abiotic stress responses, but their roles in crop production under open field conditions remain unknown. Methods In this study, we compared the growth, and tuber yield and composition of plants ectopically expressing the CDF1 gene from Arabidopsis under the control of the 35S promoter with wild-type (WT) potato plants cultured in growth chamber and open field conditions. Results In growth chambers, the 35S::AtCDF1 plants showed a greater tuber yield than the WT by increasing the biomass partition for tuber development. Under field conditions, the ectopic expression of CDF1 also promoted the sink strength of the tubers, since 35S::AtCDF1 plants exhibited significant increases in tuber size and weight resulting in higher tuber yield. A metabolomic analysis revealed that tubers of 35S::AtCDF1 plants cultured under open field conditions accumulated higher levels of glucose, starch and amino acids than WT tubers. A comparative proteomic analysis of tubers of 35S::AtCDF1 and WT plants cultured under open field conditions revealed that these changes can be accounted for changes in the expression of proteins involved in energy production and different aspects of C and N metabolism. Discussion The results from this study advance our collective understanding of the role of CDFs and are of great interest for the purposes of improving the yield and breeding of crop plants

    Tractography passes the test: Results from the diffusion-simulated connectivity (disco) challenge.

    Get PDF
    Estimating structural connectivity from diffusion-weighted magnetic resonance imaging is a challenging task, partly due to the presence of false-positive connections and the misestimation of connection weights. Building on previous efforts, the MICCAI-CDMRI Diffusion-Simulated Connectivity (DiSCo) challenge was carried out to evaluate state-of-the-art connectivity methods using novel large-scale numerical phantoms. The diffusion signal for the phantoms was obtained from Monte Carlo simulations. The results of the challenge suggest that methods selected by the 14 teams participating in the challenge can provide high correlations between estimated and ground-truth connectivity weights, in complex numerical environments. Additionally, the methods used by the participating teams were able to accurately identify the binary connectivity of the numerical dataset. However, specific false positive and false negative connections were consistently estimated across all methods. Although the challenge dataset doesn't capture the complexity of a real brain, it provided unique data with known macrostructure and microstructure ground-truth properties to facilitate the development of connectivity estimation methods

    A large topographic feature on the surface of the trans-Neptunian object (307261) 2002 MS4_4 measured from stellar occultations

    Full text link
    This work aims at constraining the size, shape, and geometric albedo of the dwarf planet candidate 2002 MS4 through the analysis of nine stellar occultation events. Using multichord detection, we also studied the object's topography by analyzing the obtained limb and the residuals between observed chords and the best-fitted ellipse. We predicted and organized the observational campaigns of nine stellar occultations by 2002 MS4 between 2019 and 2022, resulting in two single-chord events, four double-chord detections, and three events with three to up to sixty-one positive chords. Using 13 selected chords from the 8 August 2020 event, we determined the global elliptical limb of 2002 MS4. The best-fitted ellipse, combined with the object's rotational information from the literature, constrains the object's size, shape, and albedo. Additionally, we developed a new method to characterize topography features on the object's limb. The global limb has a semi-major axis of 412 ±\pm 10 km, a semi-minor axis of 385 ±\pm 17 km, and the position angle of the minor axis is 121 ^\circ ±\pm 16^\circ. From this instantaneous limb, we obtained 2002 MS4's geometric albedo and the projected area-equivalent diameter. Significant deviations from the fitted ellipse in the northernmost limb are detected from multiple sites highlighting three distinct topographic features: one 11 km depth depression followed by a 255+4^{+4}_{-5} km height elevation next to a crater-like depression with an extension of 322 ±\pm 39 km and 45.1 ±\pm 1.5 km deep. Our results present an object that is \approx138 km smaller in diameter than derived from thermal data, possibly indicating the presence of a so-far unknown satellite. However, within the error bars, the geometric albedo in the V-band agrees with the results published in the literature, even with the radiometric-derived albedo

    Subcortical volumes across the lifespan: Data from 18,605 healthy individuals aged 3–90 years

    Get PDF
    Age has a major effect on brain volume. However, the normative studies available are constrained by small sample sizes, restricted age coverage and significant methodological variability. These limitations introduce inconsistencies and may obscure or distort the lifespan trajectories of brain morphometry. In response, we capitalized on the resources of the Enhancing Neuroimaging Genetics through Meta‐Analysis (ENIGMA) Consortium to examine age‐related trajectories inferred from cross‐sectional measures of the ventricles, the basal ganglia (caudate, putamen, pallidum, and nucleus accumbens), the thalamus, hippocampus and amygdala using magnetic resonance imaging data obtained from 18,605 individuals aged 3–90 years. All subcortical structure volumes were at their maximum value early in life. The volume of the basal ganglia showed a monotonic negative association with age thereafter; there was no significant association between age and the volumes of the thalamus, amygdala and the hippocampus (with some degree of decline in thalamus) until the sixth decade of life after which they also showed a steep negative association with age. The lateral ventricles showed continuous enlargement throughout the lifespan. Age was positively associated with inter‐individual variability in the hippocampus and amygdala and the lateral ventricles. These results were robust to potential confounders and could be used to examine the functional significance of deviations from typical age‐related morphometric patterns

    Determination of the number of light neutrino species from single photon production at LEP

    Get PDF
    A determination of the number of light neutrino families performed by measuring the cross section of single photon production in \ee\ collision near the \Zo\ resonance is reported. From an integrated luminosity of 100 pb1100~\mathrm{pb^{-1}}, collected during the years 1991--94, we have observed 2091 single photon candidates with an energy above 1~\GeV\ in the polar angular region 45<θγ<13545^\circ < \theta_\gamma < 135^\circ. From a maximum likelihood fit to the single photon cross section, the \Zo\ decay width into invisible particles is measured to be \Ginv = 498 \pm 12 \mathrm{(stat)} \pm 12 \mathrm{(sys)~MeV}. Using the Standard Model couplings of neutrinos to the \Zo, the number of light neutrino species is determined to be $N_\nu = 2.98 \pm 0.07 (\mathrm{stat}) \pm 0.07 (\mathrm{sys}).

    Search for R-Parity Breaking Sneutrino Exchange at LEP

    Get PDF
    We report on a search for R--parity breaking effects due to supersymmetric tau--sneutrino exchange in the reactions e+e- to e+e- and e+e- to mu+mu- at centre--of--mass energies from 91~{\GeV} to 172~{\GeV}, using the L3 detector at LEP. No evidence for deviations from the Standard Model expectations of the measured cross sections and forward--backward asymmetries for these reactions is found. Upper limits for the couplings λ131\lambda_{131} and λ232\lambda_{232} for sneutrino masses up to m_{\SNT} \leq 190~\GeV are determined from an analysis of the expected effects due to tau sneutrino exchange

    Measurement of η(958)\eta '(958) formation in two-photon collisions at LEP1

    Get PDF
    The formation of the eta' in the reaction ee->ee eta'->ee pi pi gamma has been measured by the L3 detector at a centre-of-mass energy of 91 GeV. The radiative width of the eta' has been found to be 4.17 +/- 0.10(stat.) +/- 0.27(sys.) keV . The Q^2 dependence of the eta' formation cross section has been measured for Q^2 < 10 GeV^2 and the eta' electromagnetic transition form factor has been determined. The form factor can be parametrised by a pole form with Lambda = 0.900 +/- 0.046(stat) +/- 0.022(sys) GeV. It is also consistent with recent non-perturbative QCD calculations

    Angular multiplicity fluctuations in hadronic Z decays and comparison to QCD models and analytical calculations

    Get PDF
    Local multiplicity fluctuations in angular phase space intervals are studied using factorial moments measured in hadronic events at \sqrt{s}\simeq 91.2\GeV, which were collected by the L3 detector at LEP in 1994. Parton shower Monte Carlo programs agree well with the data. On the other hand, first-order QCD calculations in the Double Leading Log Approximation and the Modified Leading Log Approximation are found to deviate significantly from the data
    corecore