468 research outputs found
Friction, order, and transverse pinning of a two-dimensional elastic lattice under periodic and impurity potentials
Frictional phenomena of two-dimensional elastic lattices are studied
numerically based on a two-dimensional Frenkel-Kontorova model with impurities.
It is shown that impurities can assist the depinning. We also investigate
anisotropic ordering and transverse pinning effects of sliding lattices, which
are characteristic of the moving Bragg glass state and/or transverse glass
state. Peculiar velocity dependence of the transverse pinning is observed in
the presence of both periodic and random potentials and discussed in the
relation with growing order and discommensurate structures.Comment: RevTeX, 4 pages, 5 figures. to appear in Phys. Rev. B Rapid Commu
The remarkable outburst of the highly-evolved post period-minimum dwarf nova SSS J122221.7−311525
We report extensive 3-yr multiwavelength observations of the WZ Sge-type dwarf nova SSS J122221.7−311525 during its unusual double superoutburst, the following decline and in quiescence. The second segment of the superoutburst had a long duration of 33 d and a very gentle decline with a rate of 0.02 mag d−1, and it displayed an extended post-outburst decline lasting at least 500 d. Simultaneously with the start of the rapid fading from the superoutburst plateau, the system showed the appearance of a strong near-infrared excess resulting in very red colours, which reached extreme values (B − I ≃ 1.4) about 20 d later. The colours then became bluer again, but it took at least 250 d to acquire a stable level. Superhumps were clearly visible in the light curve from our very first time-resolved observations until at least 420 d after the rapid fading from the superoutburst. The spectroscopic and photometric data revealed an orbital period of 109.80 min and a fractional superhump period excess ≲0.8 per cent, indicating a very low mass ratio q ≲ 0.045. With such a small mass ratio the donor mass should be below the hydrogen-burning minimum mass limit. The observed infrared flux in quiescence is indeed much lower than is expected from a cataclysmic variable with a near-main-sequence donor star. This strongly suggests a brown-dwarf-like nature for the donor and that SSS J122221.7−311525 has already evolved away from the period minimum towards longer periods, with the donor now extremely dim
Origin and Evolution of Saturn's Ring System
The origin and long-term evolution of Saturn's rings is still an unsolved
problem in modern planetary science. In this chapter we review the current
state of our knowledge on this long-standing question for the main rings (A,
Cassini Division, B, C), the F Ring, and the diffuse rings (E and G). During
the Voyager era, models of evolutionary processes affecting the rings on long
time scales (erosion, viscous spreading, accretion, ballistic transport, etc.)
had suggested that Saturn's rings are not older than 100 My. In addition,
Saturn's large system of diffuse rings has been thought to be the result of
material loss from one or more of Saturn's satellites. In the Cassini era, high
spatial and spectral resolution data have allowed progress to be made on some
of these questions. Discoveries such as the ''propellers'' in the A ring, the
shape of ring-embedded moonlets, the clumps in the F Ring, and Enceladus' plume
provide new constraints on evolutionary processes in Saturn's rings. At the
same time, advances in numerical simulations over the last 20 years have opened
the way to realistic models of the rings's fine scale structure, and progress
in our understanding of the formation of the Solar System provides a
better-defined historical context in which to understand ring formation. All
these elements have important implications for the origin and long-term
evolution of Saturn's rings. They strengthen the idea that Saturn's rings are
very dynamical and rapidly evolving, while new arguments suggest that the rings
could be older than previously believed, provided that they are regularly
renewed. Key evolutionary processes, timescales and possible scenarios for the
rings's origin are reviewed in the light of tComment: Chapter 17 of the book ''Saturn After Cassini-Huygens'' Saturn from
Cassini-Huygens, Dougherty, M.K.; Esposito, L.W.; Krimigis, S.M. (Ed.) (2009)
537-57
The PHENIX Experiment at RHIC
The physics emphases of the PHENIX collaboration and the design and current
status of the PHENIX detector are discussed. The plan of the collaboration for
making the most effective use of the available luminosity in the first years of
RHIC operation is also presented.Comment: 5 pages, 1 figure. Further details of the PHENIX physics program
available at http://www.rhic.bnl.gov/phenix
Formation of stars and planets: the role of magnetic fields
Star formation is thought to be triggered by gravitational collapse of the
dense cores of molecular clouds. Angular momentum conservation during the
collapse results in the progressive increase of the centrifugal force, which
eventually halts the inflow of material and leads to the development of a
central mass surrounded by a disc. In the presence of an angular momentum
transport mechanism, mass accretion onto the central object proceeds through
this disc, and it is believed that this is how stars typically gain most of
their mass. However, the mechanisms responsible for this transport of angular
momentum are not well understood. Although the gravitational field of a
companion star or even gravitational instabilities (particularly in massive
discs) may play a role, the most general mechanisms are turbulence viscosity
driven by the magnetorotational instability (MRI), and outflows accelerated
centrifugally from the surfaces of the disc. Both processes are powered by the
action of magnetic fields and are, in turn, likely to strongly affect the
structure, dynamics, evolutionary path and planet-forming capabilities of their
host discs. The weak ionisation of protostellar discs, however, may prevent the
magnetic field from effectively coupling to the gas and shear and driving these
processes. Here I examine the viability and properties of these
magnetically-driven processes in protostellar discs. The results indicate that,
despite the weak ionisation, the magnetic field is able to couple to the gas
and shear for fluid conditions thought to be satisfied over a wide range of
radii in these discs.Comment: Invited Review. 11 figures and 1 table. Accepted for publication in
Astrophysics & Space Scienc
A Low-Footprint Java-to-Native Compilation Scheme Using Formal Methods
Ahead-of-Time and Just-in-Time compilation are common ways to improve runtime performances of restrained systems like Java Card by turning critical Java methods into native code. However, native code is much bigger than Java bytecode, which severely limits or even forbids these practices for devices with memory constraints. In this paper, we describe and evaluate a method for reducing natively-compiled code by suppressing runtime exception check sites, which are emitted when compiling bytecodes that may potentially throw runtime exceptions. This is made possible by completing the Java program with JML annotations, and using a theorem prover in order to formally prove that the compiled methods never throw runtime exceptions. Runtime exception check sites can then safely be removed from the generated native code, as it is proved they will never be entered. We have experimented our approach on several card-range and embedded Java applications, and were able to remove almost all the exception check sites. Results show memory footprints for native code that are up to 70% smaller than the non-optimized version, and sometimes as low than 115% the size of the Java bytecode when compiled for ARM thumb
Observation of B_s0->D_s*- pi+, B_s0->D_s(*)- rho+ Decays and Measurement of B_s0->D_s*- rho+ Polarization
First observations of the B_s0->D_s*- pi+, B_s0->D_s- rho+ and B_s0->D_s*-
rho+ decays are reported together with measurements of their branching
fractions: B(B_s0->D_s*- pi+)=(2.4 +0.5-0.4(stat.) +-0.3(syst.)
+-0.4(fs))x10^(-3), B(Bs->D_s- rho+)=(8.5 +1.3-1.2(stat.) +-1.1(syst.)
+-1.3(fs))x10^(-3) and B(Bs->D_s*- rho+)=(11.8 +2.2-2.0(stat.) +-1.7(syst.)
+-1.8(fs))x10^(-3) (f_s=N(B_s(*)B_s(*)-bar)/N(b b-bar)). From helicity-angle
distributions, we measured the longitudinal polarization fraction in
B_s0->D_s*- rho+ decays to be f_L(Bs->D_s*- rho+)=1.05 +0.08-0.10(stat.)
+0.03-0.04(syst.). These results are based on a 23.6 /fb data sample collected
at the Y(5S) resonance with the Belle detector at the KEKB e+e- collider.Comment: 6 pages, 2 figures; submitted to Phys. Rev. Lett
Photonic molecules and spectral engineering
This chapter reviews the fundamental optical properties and applications of
pho-tonic molecules (PMs) - photonic structures formed by electromagnetic
coupling of two or more optical microcavities (photonic atoms). Controllable
interaction between light and matter in photonic atoms can be further modified
and en-hanced by the manipulation of their mutual coupling. Mechanical and
optical tunability of PMs not only adds new functionalities to
microcavity-based optical components but also paves the way for their use as
testbeds for the exploration of novel physical regimes in atomic physics and
quantum optics. Theoretical studies carried on for over a decade yielded novel
PM designs that make possible lowering thresholds of semiconductor microlasers,
producing directional light emission, achieving optically-induced transparency,
and enhancing sensitivity of microcavity-based bio-, stress- and
rotation-sensors. Recent advances in material science and nano-fabrication
techniques make possible the realization of optimally-tuned PMs for cavity
quantum electrodynamic experiments, classical and quantum information
processing, and sensing.Comment: A review book chapter: 29 pages, 19 figure
Search for Lepton-Flavor-Violating and Lepton-Number-Violating tau to lhh' Decay Modes
We search for lepton-flavor-violating and lepton-number-violating tau decays
into a lepton (l = electron or muon) and two charged mesons (h, h' = pion or
Kaon) using 854 fb^{-1} of data collected with the Belle detector at the KEKB
asymmetric-energy e^+e^- collider. We obtain 90% confidence level upper limits
on the tau to lhh' branching fractions in the range (2.0-8.4)*10^{-8}. These
results improve upon our previously published upper limits by factors of about
1.8 on average.Comment: 14 pages, 5 figures, submitted to Phys. Lett.
- …