
Physics Letters B 719 (2013) 346–353
Contents lists available at SciVerse ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Search for lepton-flavor and lepton-number-violating τ → �hh′ decay modes

Belle Collaboration

Y. Miyazaki x, K. Hayasaka y,∗, I. Adachi g, H. Aihara au, D.M. Asner ai, V. Aulchenko b, T. Aushev l,
A.M. Bakich ao, A. Bay s, V. Bhardwaj z, B. Bhuyan h, M. Bischofberger z, A. Bozek ad, M. Bračko u,m,
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We search for lepton-flavor and lepton-number-violating τ decays into a lepton (� = electron or muon)
and two charged mesons (h,h′ = π± or K ±) using 854 fb−1 of data collected with the Belle detector at
the KEKB asymmetric-energy e+e− collider. We obtain 90% confidence level upper limits on the τ → �hh′
branching fractions in the range (2.0–8.4) × 10−8. These results improve upon our previously published
upper limits by factors of about 1.8 on average.

© 2013 Elsevier B.V. Open access under CC BY license.
1. Introduction

Lepton flavor violation (LFV) in charged lepton decays is for-
bidden in the Standard Model (SM) and highly suppressed even
if neutrino mixing is taken into account. On the other hand, ex-
tensions of the SM, such as supersymmetry, leptoquark and many
other models [1–8], predict LFV with branching fractions as large
as 10−8, which are accessible in current B-factory experiments. We
search for neutrinoless lepton-flavor-violating τ− → �−h+h′− de-
cays and lepton-number-violating τ− → �+h−h′− decays,1 where
� is an electron or muon and h(′) is a charged pion or kaon. We an-
alyze a 854 fb−1 data sample collected with the Belle detector [9]
at the KEKB asymmetric-energy e+e− collider [10] at center-of-
mass (CM) energies at or below the Υ (4S) and Υ (5S) resonances.
Previously, we obtained 90% confidence level (C.L.) upper limits on
the branching fractions using 671 fb−1 of data; the results were in
the range (3.3–16) × 10−8 [11]. The BaBar Collaboration has also
published 90% C.L. upper limits in the range (7–48) × 10−8 using
221 fb−1 of data [12].

The Belle detector is a large-solid-angle magnetic spectrometer
that consists of a silicon vertex detector (SVD), a 50-layer cen-
tral drift chamber (CDC), an array of aerogel threshold Cherenkov
counters (ACC), a barrel-like arrangement of time-of-flight scin-
tillation counters (TOF), and an electromagnetic calorimeter com-
prised of CsI(Tl) crystals (ECL), all located inside a superconducting
solenoid coil that provides a 1.5 T magnetic field. An iron flux-
return located outside of the coil is instrumented to detect K 0

L

1 Throughout this Letter, charge-conjugate modes are implied; hence, the nota-
tion τ → �hh′ includes both τ− → �−h+h′− and τ− → �+h−h′− modes.
mesons and to identify muons (KLM). The detector is described
in detail elsewhere [9].

Particle identification is very important for this measurement.
We use particle identification likelihood variables based on the
ratio of the energy deposited in the ECL to the momentum mea-
sured in the SVD and CDC, shower shape in the ECL, the particle’s
range in the KLM, hit information from the ACC, dE/dx measured
in the CDC, and the particle’s time of flight. To distinguish hadron
species, we use likelihood ratios, P(i/ j) = Li/(Li +L j), where Li
(L j) is the likelihood of the observed detector response for a track
with flavor i ( j). For lepton identification, we form likelihood ratios
P(e) [13] and P(μ) [14] using the responses of the appropriate
subdetectors.

We use Monte Carlo (MC) samples to estimate the signal
efficiency and optimize the event selection. Signal and back-
ground event samples from generic τ+τ− decays are generated
by KKMC/TAUOLA [15]. For signal, we generate the e+e− → τ+τ−
process, in which one τ is forced to decay into a lepton and two
charged mesons using a three-body phase space model, while the
other τ decays following SM branching ratios. Background sam-
ples from B B̄ and continuum e+e− → qq̄ (q = u,d, s, c) processes
are generated by EvtGen [16] while Bhabha and two-photon pro-
cesses are generated by BHLUMI [17] and AAFH [18], respectively.
In what follows, all kinematic variables are calculated in the lab-
oratory frame unless otherwise specified. In particular, variables
calculated in the e+e− CM frame are indicated by the super-
script “CM”.

2. Event selection

We search for τ+τ− events in which one τ (the signal τ ) de-
cays into a lepton and two charged mesons (h,h′ = π± or K ±),

http://creativecommons.org/licenses/by/3.0/
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and the other τ (the tag τ ) decays into one charged track, any
number of additional photons and neutrinos.

For each candidate event we calculate the �hh′ invariant
mass (M�hh′ ) and the difference of the �hh′ energy from the beam
energy in the CM frame (�E). In the two-dimensional distribu-
tion of M�hh′ versus �E , signal events should have M�hh′ close
to the τ -lepton mass (mτ ) and �E close to zero. From MC sim-
ulations, the dominant background for the τ → μhh′ modes is
from continuum and generic τ+τ− processes, while that for the
τ → ehh′ modes is from two-photon processes. Therefore, the
event selection is optimized mode-by-mode since the backgrounds
are mode dependent. This analysis includes 27% more data than
in the previous one [11]. We reoptimized the selection criteria
by reblinding the whole data set in the signal region until all
selection criteria are finalized. The selection criteria are deter-
mined so that the figure of merit (FOM), defined by FOM = (Signal
detection efficiency)/

√
No. of expected background events, is max-

imized. Here, the expected background is estimated using events
from the simulated samples within the ±20σM�hh′ and ±5σ�E re-
gion on the M�hh′ vs �E plane, where σM�hh′ /�E is the resolution
of M�hh′ or �E , respectively, and details will be discussed later.

Candidate τ -pair events are required to have four tracks with
zero net charge. All charged tracks and photons are required to
be reconstructed within the fiducial volume defined by −0.866 <

cos θ < 0.956, where θ is the polar angle with respect to the direc-
tion along the e+ beam. Each charged track should have transverse
momentum (pt ) greater than 0.1 GeV/c while each photon should
have energy (Eγ ) greater than 0.1 GeV. For each charged track, the
distance of the closest point with respect to the interaction point
is required to be less than 0.5 cm in the transverse direction and
less than 3.0 cm in the longitudinal direction.

Using the plane perpendicular to the CM thrust axis [19], which
is calculated from the observed tracks and photon candidates, we
separate the particles in an event into two hemispheres. These are
referred to as the signal and tag sides. The tag side is required
to include a single charged track while the signal side is required
to contain three charged tracks. We require one of three charged
tracks on the signal side to be identified as a lepton. The electron
and muon identification criteria are P(e) > 0.9 with momentum
p > 0.6 GeV/c and P(μ) > 0.95 with p > 1.0 GeV/c, respectively.
In order to take into account the emission of bremsstrahlung pho-
tons from the electron, the momentum of the electron candidate
is reconstructed by adding to it the momentum of every photon
within 0.05 radians of the electron track direction. The electron
(muon) identification efficiency is 89% (81%) while the probability
to misidentify a pion as an electron (a muon) is 0.7% (1.2%).

Charged kaons are identified by a condition P(K/π) >

(0.6–0.9) for each mode, as shown in Table 1, while charged pi-
ons are identified by the requirement P(K/π) < 0.6. Furthermore,
we apply a proton veto for kaon candidates, P(p/K ) < 0.6, to
reduce protons incorrectly identified as kaons. The kaon (pion)
identification efficiency is around 80% (88%) while the probabil-
ity to misidentify a pion (kaon) as a kaon (pion) is below 10%
(12%). In order to suppress background from photon conversions
(i.e. γ → e+e−), we require each h or h′ candidate track to have
P(e) < 0.1. Furthermore, we apply the condition P(μ) < 0.1 to
suppress two-photon background from e+e− → e+e−μ+μ− .

Because a signal decay has no neutrino, the missing momentum
is entirely due to neutrinos emitted from the tag side. The missing
momentum �pmiss is defined as a difference between the sum of the
e+ and e− beam momenta and the vector sum of the momenta of
all tracks and photons, where photons are measured in the ECL as
clusters to which no charged tracks are associated. Since the direc-
tion of �pmiss should lie within the tag side of the event, the cosine
of the opening angle between �pmiss and the charged track on the
Table 1
Selection criteria for kaon identification P(K/π) and magnitude of thrust (T ).

Mode P(K/π) T

τ → μππ − 0.90 < T < 0.98
τ → μKπ > 0.9 0.92 < T < 0.98
τ → μK K > 0.8 0.92 < T < 0.98
τ → eππ − 0.90 < T < 0.97
τ → eKπ > 0.8 0.90 < T < 0.97
τ → eK K > 0.6 0.90 < T < 0.98

tag side in the CM system, cos θCM
tag-miss, is required to be greater

than zero. If the track on the tag side is a hadron, we also require
cos θCM

tag-miss < 0.85 for the τ → μhh′ modes. This requirement re-
duces continuum background with missing energy due to neutrons
or K 0

L ’s since the masses of the neutron and K 0
L are larger than

that of the neutrino. We also require that cos θCM
tag-miss < 0.96 for

τ → ehh′ modes. This requirement reduces Bhabha, inelastic vector
meson-photoproduction, and two-photon background, since these
processes produce electron in the tag-side in many cases and the
electron can produce the radiated photons which result in missing
momentum if they overlap with the ECL clusters associated with
the tag-side track [20]. In addition, in order to ensure that the
missing particles are neutrinos rather than photons or charged par-
ticles that leave the detector acceptance, we impose requirements
on �pmiss: We require that |pt

miss|, the magnitude of the transverse
component of �pmiss, be greater than 0.5 GeV/c (0.7 GeV/c) for the
τ → μhh′ (ehh′) modes, and that its direction point into the fidu-
cial volume of the detector. For the τ− → e−π+π− mode only, we
apply the tighter selection requirement |pt

miss| > 1.5 GeV/c.
To reject continuum, Bhabha and μ+μ− background, we re-

quire the magnitude of the thrust (T ) to be in the ranges given in
Table 1.

To suppress the B B̄ and continuum background, we require that
the number of photons on the tag side be nTAG

γ � 2 and nTAG
γ � 1

for decays with hadronic and leptonic tags, respectively. A leptonic
tag is defined as P(e) > 0.1 or P(μ) > 0.1 while a tag is hadronic
if the leptonic requirements are not satisfied. We allow at most one
additional photon on the signal side. The reconstructed mass of the
tag side, combining the photons with the charged track (assumed
to be a pion mass) from the tag side, mtag, is required to be less
than 1.0 GeV/c2 to reduce the continuum background.

Photon conversions can result in large backgrounds when an
electron is reconstructed as a hadron and still passes the elec-
tron veto. For the τ → ehh′ modes, the e−h+ and h′−h+ invariant
masses for the τ− → e−h+h′− modes (e+h− and e+h′− for the
τ− → e+h−h′− modes), assigning the electron mass to both tracks,
are required to be greater than 0.2 GeV/c2 to reduce photon con-
version and other backgrounds.

For the τ → μhh′ modes, a real muon track can come from
a kaon decaying in the CDC (K ± → μ±νμ). Therefore, we apply
a kaon veto, P(K/π) < 0.6, for muon candidate tracks if the tag
side track is a hadron (see Fig. 1(a)). Another significant contin-
uum background is from di-baryon production with a proton on
the tag side. To suppress this background, we apply a proton veto,
P(p/π) < 0.6 and P(p/K ) < 0.6, as shown in Figs. 1(b) and 1(c).

For the τ− → μ−π+π− mode, we reduce the e+e− → μ+μ−γ
background (with the photon converting into an electron–positron
pair) by requiring that the invariant mass of the pion pair, eval-
uated by assuming the electron mass for both tracks, exceed
0.2 GeV/c2. In addition, we require the momentum of a muon in
the CM system be less than 4.0 GeV/c and cos θCM

tag-miss < 0.97 if
the track is a muon candidate with P(μ) > 0.1.

For the τ → �π K modes, the background in the signal region is
from τ− → π−π+π−ντ events in which both the kaon and lep-
ton candidates are misidentified. To reduce this background, we
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Fig. 1. (a) P(K/π) for muon tracks, (b) P(p/π) and (c) P(p/K ) for hadronic tags, for τ− → μ−π+π− candidate events. Signal MC (τ− → μ−π+π−) distributions are
normalized arbitrarily while the background MC distributions are normalized to the data luminosity. The selected regions are indicated by arrows.
Fig. 2. Invariant mass distribution of three charged tracks on the signal side with the
pion mass assigned to each track (Mπππ ) for τ− → μ−π+ K − candidate events.
Signal MC (τ− → μ−π+ K −) distributions are normalized arbitrarily while the
background MC distributions are normalized to the data luminosity. The selected
regions are indicated by the arrow.

require the invariant mass of the three charged tracks on the sig-
nal side, Mπππ , reconstructed by assigning the pion mass to the
tracks, be larger than 1.52 GeV/c2 (see Fig. 2).

Finally, to suppress backgrounds from generic τ+τ− and con-
tinuum processes, we apply a selection based on the magnitude
of the missing mass squared m2

miss. The variable m2
miss is defined

as E2
miss − p2

miss, where Emiss = Etotal − Evis, Etotal is the sum of
the beam energies and Evis is the total visible energy. We ap-
ply different selection criteria depending on the type of a one-
prong tag: there should be two emitted neutrinos (a single miss-
ing neutrino) if the tagging track is leptonic (hadronic). For the
τ → ehh′ , μππ and μK K modes, we impose the requirements
−1.5 (GeV/c2)2 < m2

miss < 1.5 (GeV/c2)2 for the hadronic tag and
−1.0 (GeV/c2)2 < m2

miss < 2.5 (GeV/c2)2 for the leptonic tag. For
the τ → μπ K modes, where the residual background after all
selections is larger than in other modes, we require the follow-
ing relation between pmiss and m2

miss: pmiss > −8.0 × m2
miss − 0.5

and pmiss > 8.0 × m2
miss − 0.5 for the hadronic tag and pmiss >

−9.0 × m2
miss + 0.4 and pmiss > 1.8 × m2

miss − 0.4 for the leptonic
tag; here pmiss is in GeV/c and mmiss is in GeV/c2 (see Fig. 3). Typ-
ically, 75% of the generic τ+τ− background is removed by these
m2

miss requirements while 75% of the signal events are retained.

3. Signal and background estimation

For all modes, the M�hh′ and �E resolutions are obtained from
fits to the signal MC distributions, using an asymmetric Gaussian
Table 2
Summary of M�hh′ and �E resolutions (σ high/low

M�hh′ (MeV/c2) and σ
high/low
�E (MeV)).

Here σ high (σ low) is the standard deviation on the higher (lower) side of the peak.

Mode σ
high
M�hh′ σ low

M�hh′ σ
high
�E σ low

�E

τ− → μ−π+π− 5.3 5.8 14.1 20.1
τ− → μ+π−π− 5.4 5.7 14.2 20.1
τ− → e−π+π− 5.7 6.2 14.3 22.0
τ− → e+π−π− 5.6 6.3 14.4 22.3
τ− → μ− K + K − 3.4 3.6 12.9 17.2
τ− → μ+ K − K − 3.4 3.3 12.9 17.3
τ− → e− K + K − 4.4 4.4 13.3 19.8
τ− → e+ K − K − 3.8 4.2 12.4 19.9
τ− → μ−π+ K − 4.4 4.8 14.2 18.8
τ− → e−π+ K − 4.8 5.5 14.0 21.0
τ− → μ− K +π− 4.6 5.1 14.3 18.7
τ− → e− K +π− 4.9 5.4 13.9 21.2
τ− → μ+ K −π− 4.5 4.7 14.7 18.6
τ− → e+ K −π− 5.0 5.4 14.0 21.2

function that takes into account initial-state radiation. These Gaus-
sians have widths as shown in Table 2.

To evaluate the branching fractions, we use elliptical signal re-
gions that contain ±3σ of the MC signal satisfying all selection
criteria. The ellipse is defined as

((M�hh′ − M0
�hh′) cos θ − (�E − �E0) sin θ)2

(3σM�hh′ )2

+ ((M�hh′ − M0
�hh′) sin θ + (�E − �E0) cos θ)2

(3σ�E)2
= 1 (1)

where M0
�hh′ and �E0 are the coordinates of the center of the el-

lipse and σM�hh′ (σ�E ) is the average of σ
high
M�hh′ and σ low

M�hh′ (σ high
�E

and σ low
�E ) in Table 2. These elliptical regions are determined by

scanning M0
�hh′ , �E0 and θ to maximize the significance in MC

simulation and obtain the highest sensitivity. Table 3 summarizes
the signal efficiencies for each mode. We blind the data in the sig-
nal region until all selection criteria are finalized to avoid bias.

Figs. 4 and 5 show scatter plots for data and signal MC samples
distributed over a ±20σ rectangular region in the M�hh′ –�E plane
for the τ → μhh′ and ehh′ modes, respectively. For the τ → μππ
modes, the dominant background is from continuum processes
while small background contributions come from generic τ+τ−
events in the �E < 0 GeV and Mμhh′ < mτ region, which are com-
binations of a misreconstructed muon and two pions. For the τ →
μK K modes, the dominant background sources are continuum
and τ+τ− processes with a pion misidentified as a kaon. For the
τ → μπ K modes, the dominant background is from generic τ+τ−
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Fig. 3. Scatter plots of pmiss vs. m2
miss for τ− → μ−π+ K − modes. (a) and (c) show the signal MC (τ− → μ−π+ K −) and generic τ+τ− MC distributions, respectively, for the

hadronic tags while (b) and (d) show the same distributions for the leptonic tags. Selected regions are indicated by lines.

Table 3
Summary of upper limits for each mode. The table shows the signal efficiency (ε), the number of expected background events (NBG) estimated from the sideband data, the
total systematic uncertainty (σsyst), the number of observed events in the signal region (Nobs), 90% C.L. upper limit on the number of signal events including systematic
uncertainties (s90) and 90% C.L. upper limit on the branching fraction (B) for each individual mode.

Mode ε (%) NBG σsyst (%) Nobs s90 B (10−8)

τ− → μ−π+π− 5.83 0.63 ± 0.23 5.7 0 1.87 2.1
τ− → μ+π−π− 6.55 0.33 ± 0.16 5.6 1 4.01 3.9
τ− → e−π+π− 5.45 0.55 ± 0.23 5.7 0 1.94 2.3
τ− → e+π−π− 6.56 0.37 ± 0.19 5.5 0 2.10 2.0
τ− → μ− K + K − 2.85 0.51 ± 0.19 6.1 0 1.97 4.4
τ− → μ+ K − K − 2.98 0.25 ± 0.13 6.2 0 2.21 4.7
τ− → e− K + K − 4.29 0.17 ± 0.10 6.7 0 2.29 3.4
τ− → e+ K − K − 4.64 0.06 ± 0.06 6.5 0 2.39 3.3
τ− → μ−π+ K − 2.72 0.72 ± 0.28 6.2 1 3.65 8.6
τ− → e−π+ K − 3.97 0.18 ± 0.13 6.4 0 2.27 3.7
τ− → μ− K +π− 2.62 0.64 ± 0.23 5.7 0 1.86 4.5
τ− → e− K +π− 4.07 0.55 ± 0.31 6.2 0 1.97 3.1
τ− → μ+ K −π− 2.55 0.56 ± 0.21 6.1 0 1.93 4.8
τ− → e+ K −π− 4.00 0.46 ± 0.21 6.2 0 2.03 3.2
decays with combinations of a misidentified muon, a misidentified
kaon and a real pion from τ− → π−π+π−ν . If a pion is misiden-
tified as a kaon, the reconstructed mass from generic τ+τ− back-
ground can be greater than the τ lepton mass since the kaon mass
is greater than that of the pion. For the τ → ehh′ modes, the dom-
inant background originates from two-photon processes, while the
background from continuum and generic τ+τ− processes is small
due to the low electron fake rate.

In order to estimate the background in the signal region, we
use the number of data events observed in the sideband region
inside a ±5σ�E band around �E = 0 GeV but excluding the sig-
nal region. The events in this band are projected onto the M�hh′
axis. For the τ → μππ modes, the extrapolation to the signal re-
gion is performed by fitting the sideband of the projected Mμππ

distribution using the sum of an exponential and a first-order poly-
nomial function for generic ττ and continuum, respectively. For
the τ → ehh′ , μK K and μπ K modes, the background remaining
after all selections is small, and extrapolation to the signal re-
gion assumes that the background is linear as a function of M�hh′ .
The systematic uncertainty due to the estimation of the expected
background includes the contributions due to the statistics of the
background sample and the shape of the background distribution.
By varying the assumptions about the background shape, we ver-
ify that this effect on the systematic uncertainty is less than 20%
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Fig. 4. Scatter plots in the M�hh′ –�E plane within a ±20σ region for the (a) τ− → μ−π+π− , (b) τ− → μ+π−π− , (c) τ− → μ− K + K − , (d) τ− → μ+ K − K − , (e) τ− →
μ−π+ K − , (f) τ− → μ− K +π− , and (g) τ− → μ+π− K − modes. The data are indicated by the solid circles. The filled boxes show the MC signal distribution with arbitrary
normalization. The elliptical signal regions shown by solid curves are used for evaluating the signal yield. The region between two horizontal solid lines excluding the signal

region is used as a sideband.
and is smaller than the background statistical error. The signal ef-
ficiency and the number of expected background events with its
uncertainty, obtained by adding statistical and systematic uncer-
tainties in quadrature for each mode, are summarized in Table 3.
After estimating the background, we open the blinded regions. We
observe one candidate event for each of the τ− → μ+π−π− and
μ−π+K − modes, and no candidate events for the other modes.
The numbers of events observed in the signal region are consis-
tent with the expected background levels.

The dominant systematic uncertainties for this analysis come
from the resolution in M�hh′ and �E and from particle identi-
fication. We estimate the uncertainties from resolutions of M�hh′
and �E due to the difference between data and MC samples to be
(3.7–4.8)%. The uncertainties due to lepton identification are 2.2%
and 1.9% from modes with an electron and a muon, respectively.
The uncertainties due to hadron identification are 1.3% and 1.8% for
pion and kaon candidates, respectively. The uncertainty due to the
charged track finding is estimated to be 0.35% per charged track;
therefore, the total uncertainty due to the charged track finding
is 1.4%. The uncertainty due to integrated luminosity is estimated
to be 1.4%. The uncertainties due to the trigger efficiency and MC
statistics are negligible compared with the other uncertainties. All
these uncertainties are added in quadrature, and the total system-
atic uncertainties for all modes are (5.5–6.7)%.

4. Upper limits on the branching fractions

Since no statistically significant excess of data over the expected
background in the signal region is observed, we set upper lim-
its on the branching fractions of the τ → �hh′ modes using the
Feldman–Cousins method [21]. The 90% C.L. upper limit on the
number of signal events including systematic uncertainty (s90) is
obtained using the POLE program without conditioning [22] based
on the number of expected background events, the number of ob-
served events and the systematic uncertainty. The upper limit on
the branching fraction (B) is then given by

B
(
τ → �hh′) <

s90

2Nττ ε
, (2)

where Nττ is the number of τ+τ− pairs, and ε is the signal
efficiency. The value Nττ = 782 × 106 is obtained from the in-
tegrated luminosity and the cross section of τ -pair production,
which is calculated in KKMC [23] to be σττ = 0.919 ± 0.003 nb
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Fig. 5. Scatter plots in the M�hh′ –�E plane within a ±20σ region for a (a) τ− → e−π+π− , (b) τ− → e+π−π− , (c) τ− → e− K + K − , (d) τ− → e+ K − K − , (e) τ− → e−π+ K − ,
(f) τ− → e− K +π− , and (g) τ− → e+π− K − modes. The data are indicated by the solid circles. The filled boxes show the MC signal distribution with arbitrary normalization.
The elliptical signal regions shown by solid curves are used for evaluating the signal yield. The region between two horizontal solid lines excluding the signal region is used
as a sideband.
and σττ = 0.875 ± 0.003 nb for 782 fb−1 at Υ (4S) and 72 fb−1

at Υ (5S), respectively. Table 3 summarizes the results for all
modes. The upper limits for the τ → ehh′ modes are in the range
(2.0–3.7) × 10−8 while those for the τ → μhh′ modes are in the
range (2.1–8.6)× 10−8. These results improve upon our previously
published upper limits [11] by factors of about 1.8 on average. This
improvement results both from using a larger data sample and
from the introduction of an improved rejection of specific back-
grounds, such as di-baryon production in the continuum for the
τ → μhh′ modes, and improved kinematic event selections, for ex-
ample, the Mπππ requirement for the τ → �π K modes.

5. Summary

We have searched for lepton-flavor and lepton-number-violating
τ decays into a lepton and two charged mesons using 854 fb−1 of
data. We obtain 90% C.L. upper limits on the branching fractions
of τ → ehh′ in the range (2.0–3.7) × 10−8 and upper limits on
τ → μhh′ in the range (2.1–8.6) × 10−8. These results improve
upon our previously published upper limits by factors of about 1.8
on average. These more stringent upper limits can be used to con-
strain the space of parameters in various models of new physics.
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