24 research outputs found

    Mobile DHHC palmitoylating enzyme mediates activity-sensitive synaptic targeting of PSD-95

    Get PDF
    Protein palmitoylation is the most common posttranslational lipid modification; its reversibility mediates protein shuttling between intracellular compartments. A large family of DHHC (Asp-His-His-Cys) proteins has emerged as protein palmitoyl acyltransferases (PATs). However, mechanisms that regulate these PATs in a physiological context remain unknown. In this study, we efficiently monitored the dynamic palmitate cycling on synaptic scaffold PSD-95. We found that blocking synaptic activity rapidly induces PSD-95 palmitoylation and mediates synaptic clustering of PSD-95 and associated AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid)-type glutamate receptors. A dendritically localized DHHC2 but not the Golgi-resident DHHC3 mediates this activity-sensitive palmitoylation. Upon activity blockade, DHHC2 translocates to the postsynaptic density to transduce this effect. These data demonstrate that individual DHHC members are differentially regulated and that dynamic recruitment of protein palmitoylation machinery enables compartmentalized regulation of protein trafficking in response to extracellular signals

    Palmitoylation Regulates Epidermal Homeostasis and Hair Follicle Differentiation

    Get PDF
    Palmitoylation is a key post-translational modification mediated by a family of DHHC-containing palmitoyl acyl-transferases (PATs). Unlike other lipid modifications, palmitoylation is reversible and thus often regulates dynamic protein interactions. We find that the mouse hair loss mutant, depilated, (dep) is due to a single amino acid deletion in the PAT, Zdhhc21, resulting in protein mislocalization and loss of palmitoylation activity. We examined expression of Zdhhc21 protein in skin and find it restricted to specific hair lineages. Loss of Zdhhc21 function results in delayed hair shaft differentiation, at the site of expression of the gene, but also leads to hyperplasia of the interfollicular epidermis (IFE) and sebaceous glands, distant from the expression site. The specific delay in follicle differentiation is associated with attenuated anagen propagation and is reflected by decreased levels of Lef1, nuclear ÎČ-catenin, and Foxn1 in hair shaft progenitors. In the thickened basal compartment of mutant IFE, phospho-ERK and cell proliferation are increased, suggesting increased signaling through EGFR or integrin-related receptors, with a parallel reduction in expression of the key differentiation factor Gata3. We show that the Src-family kinase, Fyn, involved in keratinocyte differentiation, is a direct palmitoylation target of Zdhhc21 and is mislocalized in mutant follicles. This study is the first to demonstrate a key role for palmitoylation in regulating developmental signals in mammalian tissue homeostasis

    Off‐target inhibition by active site‐targeting SHP2 inhibitors

    No full text
    Due to the involvement of SHP2 (SH2 domain‐containing protein‐tyrosine phosphatase) in human disease, including Noonan syndrome and cancer, several inhibitors targeting SHP2 have been developed. Here, we report that the commonly used SHP2 inhibitor NSC‐87877 does not exhibit robust inhibitory effects on growth factor‐dependent MAPK (mitogen‐activated protein kinase) pathway activation and that the recently developed active site‐targeting SHP2 inhibitors IIB‐08, 11a‐1, and GS‐493 show off‐target effects on ligand‐evoked activation/trans‐phosphorylation of the PDGFRÎČ (platelet‐derived growth factor receptor ÎČ). GS‐493 also inhibits purified human PDGFRÎČ and SRC in vitro, whereas PDGFRÎČ inhibition by IIB‐08 and 11a‐1 occurs only in the cellular context. Our results argue for extreme caution in inferring specific functions for SHP2 based on studies using these inhibitors

    Focal Adhesion Kinase Is a Substrate and Downstream Effector of SHP-2 Complexed with Helicobacter pylori CagA

    Get PDF
    Infection with cagA-positive Helicobacter pylori (H. pylori) is associated with atrophic gastritis, peptic ulcer, and gastric adenocarcinoma. The cagA gene product CagA is translocated from H. pylori into gastric epithelial cells and undergoes tyrosine phosphorylation by Src family kinases (SFKs). Tyrosine-phosphorylated CagA binds and activates SHP-2 phosphatase and the C-terminal Src kinase (Csk) while inducing an elongated cell shape termed the “hummingbird phenotype.” Here we show that CagA reduces the level of focal adhesion kinase (FAK) tyrosine phosphorylation in gastric epithelial cells. The decrease in phosphorylated FAK is due to SHP-2-mediated dephosphorylation of FAK at the activating phosphorylation sites, not due to Csk-dependent inhibition of SFKs, which phosphorylate FAK. Coexpression of constitutively active FAK with CagA inhibits induction of the hummingbird phenotype, whereas expression of dominant-negative FAK elicits an elongated cell shape characteristic of the hummingbird phenotype. These results indicate that inhibition of FAK by SHP-2 plays a crucial role in the morphogenetic activity of CagA. Impaired cell adhesion and increased motility by CagA may be involved in the development of gastric lesions associated with cagA-positive H. pylori infection

    Influence of EPIYA-repeat polymorphism on the phosphorylation-dependent biological activity of Helicobacter pylori CagA

    Get PDF
    Background & Aims: Helicobacter pylori CagA-positive strain is associated with gastric adenocarcinoma. CagA is delivered into gastric epithelial cells, where it undergoes tyrosine phosphorylation at the EPIYA sites by Src family kinases (SFKs). Owing to homologous recombination within the 3'-region of the cagA gene, 4 distinct EPIYA sites, each of which is defined by surrounding sequences, are variably assembled in both number and order among CagA proteins from different clinical H pylori isolates. Tyrosine-phosphorylated CagA specifically binds and deregulates SHP-2 via the Western CagA-specific EPIYA-C or East Asian CagA-specific EPIYA-D site, and C-terminal Src kinase (Csk) via the EPIYA-A or EPIYA-B site. Here we investigated the influence of EPIYA-repeat polymorphism on the CagA activity. Methods: A series of EPIYA-repeat variants of CagA were expressed in AGS gastric epithelial cells and the ability of individual CagA to bind SHP-2 or Csk was determined by the sequential immunoprecipitation and immunoblotting method. Results: CagA proteins carrying multiple EPIYA-C or EPIYA-D sites bound and deregulated SHP-2 more strongly than those having a single EPIYA-C or EPIYA-D. Furthermore, the ability of CagA to bind Csk was correlated with the number of EPIYA-A and EPIYA-B sites. Because Csk inhibits SFK, CagA with greater Csk-binding activity more strongly inhibited Src-dependent CagA phosphorylation and more effectively attenuated induction of cell elongation caused by CagA-SHP-2 interaction. Conclusions: EFIYA-repeat polymorphism of CagA greatly influences the magnitude and duration of phosphorylation-dependent CagA activity, which may determine the potential of individual CagA as a bacterial virulence factor that directs gastric carcinogenesi

    Identification of G Protein α Subunit-Palmitoylating Enzyme▿

    No full text
    The heterotrimeric G protein α subunit (Gα) is targeted to the cytoplasmic face of the plasma membrane through reversible lipid palmitoylation and relays signals from G-protein-coupled receptors (GPCRs) to its effectors. By screening 23 DHHC motif (Asp-His-His-Cys) palmitoyl acyl-transferases, we identified DHHC3 and DHHC7 as Gα palmitoylating enzymes. DHHC3 and DHHC7 robustly palmitoylated Gαq, Gαs, and Gαi2 in HEK293T cells. Knockdown of DHHC3 and DHHC7 decreased Gαq/11 palmitoylation and relocalized it from the plasma membrane into the cytoplasm. Photoconversion analysis revealed that Gαq rapidly shuttles between the plasma membrane and the Golgi apparatus, where DHHC3 specifically localizes. Fluorescence recovery after photobleaching studies showed that DHHC3 and DHHC7 are necessary for this continuous Gαq shuttling. Furthermore, DHHC3 and DHHC7 knockdown blocked the α1A-adrenergic receptor/Gαq/11-mediated signaling pathway. Together, our findings revealed that DHHC3 and DHHC7 regulate GPCR-mediated signal transduction by controlling Gα localization to the plasma membrane

    Assay to visualize specific protein oxidation reveals spatio-temporal regulation of SHP2

    No full text
    Reactive oxygen species are produced transiently in response to cell stimuli, and function as second messengers that oxidize target proteins. Protein-tyrosine phosphatases are important reactive oxygen species targets, whose oxidation results in rapid, reversible, catalytic inactivation. Despite increasing evidence for the importance of protein-tyrosine phosphatase oxidation in signal transduction, the cell biological details of reactive oxygen species-catalyzed protein-tyrosine phosphatase inactivation have remained largely unclear, due to our inability to visualize protein-tyrosine phosphatase oxidation in cells. By combining proximity ligation assay with chemical labeling of cysteine residues in the sulfenic acid state, we visualize oxidized Src homology 2 domain-containing protein-tyrosine phosphatase 2 (SHP2). We find that platelet-derived growth factor evokes transient oxidation on or close to RAB5+/ early endosome antigen 1− endosomes. SHP2 oxidation requires NADPH oxidases (NOXs), and oxidized SHP2 co-localizes with platelet-derived growth factor receptor and NOX1/4. Our data demonstrate spatially and temporally limited protein oxidation within cells, and suggest that platelet-derived growth factor-dependent “redoxosomes,” contribute to proper signal transduction
    corecore