637 research outputs found

    Student Nurse Perceptions of Effective Medication Administration Education

    Get PDF
    Nursing faculty strive to educate students in a manner that prevents errors, promoting quality, patient-centered care. This endeavor is dependent upon meaningful and effective education that incorporates educational experiences reflective of the service sector. Anecdotal reports from clinical faculty and student nurses suggest that academic medication administration education may not optimally prepare students for safe entry into clinical practice. The aim of this phenomenologic qualitative research is to understand student nurse perceptions regarding teaching strategies and learning activities that prepared them for safe medication administration in acute care clinical settings. Focus group interviews resulted in two broad themes that are identified as Effective Education and Gaps in Education. Within these broad themes, findings revealed that students value faculty demonstrations, peer-learning opportunities, and repetitive practice with timely feedback. Study findings also pointed to educational gaps. Students reported needing to learn communication and conflict resolution strategies that would help them manage real-world interruptions, distractions, and computer generated alerts. Study findings recommend implementing relevant decision-support technology within academic lab learning activities

    The Pingding segment of the Altyn Tagh Fault (91E): Holocene slip-rate determination from cosmogenic radionuclide dating of offset fluvial terraces

    Get PDF
    International audienceMorphochronologic slip-rates on the Altyn Tagh Fault (ATF) along the southern front of the Pingding Shan at 90.5E are determined by cosmogenic radionuclide (CRN) dating of seven offset terraces at two sites. The terraces are defined based upon morphology, elevation and dating, together with fieldwork and high-resolution satellite analysis. The majority of the CRN model ages fall within narrow ranges (<2 ka) on the four main terraces (T1, T2, T3 and T3′), and allow a detailed terrace chronology. Bounds on the terrace ages and offsets of 5 independent terraces yield consistent slip-rate estimates. The long-term slip-rate of 13.9+/-1.1 mm/yr is defined at the 95% confidence level, as the joint rate probability distribution of the rate derived from each independent terrace. It falls within the bounds of all the rates defined on the central Altyn Tagh Fault between the Cherchen He (86.4E) and Akato Tagh (88E) sites. This rate is 10 mm/yr less than the upper rate determined near Tura at 87E, in keeping with the inference of an eastward decreasing rate due to progressive loss of slip to thrusts branching off the fault southwards but it is greater than the 9+/-4 mm/yr rate determined at 90E by GPS surveys and other geodetic short-term rates defined elsewhere along the ATF. Whether such disparate rates will ultimately be reconciled by a better understanding of fault mechanics, resolved transient deformations during the seismic cycle or by more accurate measurements made with either approach remains an important issue

    Analysis of ozone and nitric acid in spring and summer Arctic pollution using aircraft, ground-based, satellite observations and MOZART-4 model: source attribution and partitioning

    Get PDF
    In this paper, we analyze tropospheric O_3 together with HNO_3 during the POLARCAT (Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models, of Climate, Chemistry, Aerosols, and Transport) program, combining observations and model results. Aircraft observations from the NASA ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) and NOAA ARCPAC (Aerosol, Radiation and Cloud Processes affecting Arctic Climate) campaigns during spring and summer of 2008 are used together with the Model for Ozone and Related Chemical Tracers, version 4 (MOZART-4) to assist in the interpretation of the observations in terms of the source attribution and transport of O_3 and HNO_3 into the Arctic (north of 60° N). The MOZART-4 simulations reproduce the aircraft observations generally well (within 15%), but some discrepancies in the model are identified and discussed. The observed correlation of O_3 with HNO_3 is exploited to evaluate the MOZART-4 model performance for different air mass types (fresh plumes, free troposphere and stratospheric-contaminated air masses). Based on model simulations of O_3 and HNO_3 tagged by source type and region, we find that the anthropogenic pollution from the Northern Hemisphere is the dominant source of O3 and HNO3 in the Arctic at pressures greater than 400 hPa, and that the stratospheric influence is the principal contribution at pressures less 400 hPa. During the summer, intense Russian fire emissions contribute some amount to the tropospheric columns of both gases over the American sector of the Arctic. North American fire emissions (California and Canada) also show an important impact on tropospheric ozone in the Arctic boundary layer. Additional analysis of tropospheric O_3 measurements from ground-based FTIR and from the IASI satellite sounder made at the Eureka (Canada) and Thule (Greenland) polar sites during POLARCAT has been performed using the tagged contributions. It demonstrates the capability of these instruments for observing pollution at northern high latitudes. Differences between contributions from the sources to the tropospheric columns as measured by FTIR and IASI are discussed in terms of vertical sensitivity associated with these instruments. The first analysis of O_3 tropospheric columns observed by the IASI satellite instrument over the Arctic is also provided. Despite its limited vertical sensitivity in the lowermost atmospheric layers, we demonstrate that IASI is capable of detecting low-altitude pollution transported into the Arctic with some limitations

    Social Media Content of Idiopathic Pulmonary Fibrosis Groups and Pages on Facebook: Cross-sectional Analysis.

    Get PDF
    BACKGROUND Patients use Facebook as a resource for medical information. We analyzed posts on idiopathic pulmonary fibrosis (IPF)-related Facebook groups and pages for the presence of guideline content, user engagement, and usefulness. OBJECTIVE The objective of this study was to describe and analyze posts from Facebook groups and pages that primarily focus on IPF-related content. METHODS Cross-sectional analysis was performed on a single date, identifying Facebook groups and pages resulting from separately searching "IPF" and "idiopathic pulmonary fibrosis." For inclusion, groups and pages needed to meet either search term and be in English, publicly available, and relevant to IPF. Every 10th post was assessed for general characteristics, source, focus, and user engagement metrics. Posts were analyzed for presence of IPF guideline content, useful scientific information (eg, scientific publications), useful support information (eg, information about support groups), and potentially harmful information. RESULTS Eligibility criteria were met by 12 groups and 27 pages, leading to analysis of 523 posts. Of these, 42% contained guideline content, 24% provided useful support, 20% provided useful scientific information, and 5% contained potentially harmful information. The most common post source was nonmedical users (85%). Posts most frequently focused on IPF-related news (29%). Posts containing any guideline content had fewer likes or comments and a higher likelihood of containing potentially harmful content. Posts containing useful supportive information had more likes, shares, and comments. CONCLUSIONS Facebook contains useful information about IPF, but posts with misinformation and less guideline content have higher user engagement, making them more visible. Identifying ways to help patients with IPF discriminate between useful and harmful information on Facebook and other social media platforms is an important task for health care professionals

    Effects of nintedanib in patients with idiopathic pulmonary fibrosis by GAP stage

    Get PDF
    We conducted a post hoc analysis to assess the potential impact of GAP (gender, age, physiology) stage on the treatment effect of nintedanib in patients with idiopathic pulmonary fibrosis. Outcomes were compared in patients at GAP stage I versus II/III at baseline in the INPULSIS\uae trials. At baseline, 500 patients were at GAP stage I (nintedanib 304, placebo 196), 489 were at GAP stage II (nintedanib 296, placebo 193) and 71 were at GAP stage III (nintedanib 38, placebo 33). In nintedanibtreated patients, the annual rate of decline in forced vital capacity (FVC) was similar in patients at GAP stage I and GAP stage II/III at baseline (-110.1 and -116.6 mL.year-1, respectively), and in both subgroups was lower than in placebo-treated patients (-218.5 and -227.6 mL.year-1, respectively) (treatment-by-time-by-subgroup interaction p=0.92). In the nintedanib group, the number of deaths was 43.8% of those predicted based on GAP stage (35 versus 79.9). In the placebo group, the number of deaths was 59.8% of those predicted based on GAP stage (33 versus 55.2). In conclusion, data from the INPULSIS\uae trials suggest that nintedanib has a similar beneficial effect on the rate of FVC decline in patients at GAP stage I versus II/III at baseline

    CO<sub>2</sub> transport, variability, and budget over the southern California Air Basin using the high-resolution WRF-VPRM Model during the CalNex 2010 campaign

    Get PDF
    To study regional-scale carbon dioxide (CO2) transport, temporal variability, and budget over the Southern California Air Basin (SoCAB) during the California Research at the Nexus of Air Quality and Climate Change (CalNex) 2010 campaign period, a model that couples the Weather Research and Forecasting (WRF) Model with the Vegetation Photosynthesis and Respiration Model (VPRM) has been used. Our numerical simulations use anthropogenic CO2 emissions of the Hestia Project 2010 fossil-fuel CO2 emissions data products along with optimized VPRM parameters at ‘‘FLUXNET’’ sites, for biospheric CO2 fluxes over SoCAB. The simulated meteorological conditions have been validated with ground and aircraft observations, as well as with background CO2 concentrations from the coastal Palos Verdes site. The model captures the temporal pattern of CO2 concentrations at the ground site at the California Institute of Technology in Pasadena, but it overestimates the magnitude in early daytime. Analysis ofCO2 by wind directions reveals the overestimate is due to advection from the south and southwest, where downtown Los Angeles is located. The model also captures the vertical profile of CO2 concentrations along with the flight tracks. The optimized VPRM parameters have significantly improved simulated net ecosystem exchange at each vegetation-class site and thus the regional CO2 budget. The total biospheric contribution ranges approximately from 224% to 220% (daytime) of the total anthropogenic CO2 emissions during the study period

    Sensitivity to grid resolution in the ability of a chemical transport model to simulate observed oxidant chemistry under high-isoprene conditions

    Get PDF
    Formation of ozone and organic aerosol in continental atmospheres depends on whether isoprene emitted by vegetation is oxidized by the high-NOx pathway (where peroxy radicals react with NO) or by low-NOx pathways (where peroxy radicals react by alternate channels, mostly with HO2). We used mixed layer observations from the SEAC4RS aircraft campaign over the Southeast US to test the ability of the GEOS-Chem chemical transport model at different grid resolutions (0.25°  ×  0.3125°, 2°  ×  2.5°, 4°  ×  5°) to simulate this chemistry under high-isoprene, variable-NOx conditions. Observations of isoprene and NOx over the Southeast US show a negative correlation, reflecting the spatial segregation of emissions; this negative correlation is captured in the model at 0.25°  ×  0.3125° resolution but not at coarser resolutions. As a result, less isoprene oxidation takes place by the high-NOx pathway in the model at 0.25°  ×  0.3125° resolution (54 %) than at coarser resolution (59 %). The cumulative probability distribution functions (CDFs) of NOx, isoprene, and ozone concentrations show little difference across model resolutions and good agreement with observations, while formaldehyde is overestimated at coarse resolution because excessive isoprene oxidation takes place by the high-NOx pathway with high formaldehyde yield. The good agreement of simulated and observed concentration variances implies that smaller-scale non-linearities (urban and power plant plumes) are not important on the regional scale. Correlations of simulated vs. observed concentrations do not improve with grid resolution because finer modes of variability are intrinsically more difficult to capture. Higher model resolution leads to decreased conversion of NOx to organic nitrates and increased conversion to nitric acid, with total reactive nitrogen oxides (NOy) changing little across model resolutions. Model concentrations in the lower free troposphere are also insensitive to grid resolution. The overall low sensitivity of modeled concentrations to grid resolution implies that coarse resolution is adequate when modeling continental boundary layer chemistry for global applications
    corecore