101 research outputs found

    Large-Scale Aspects and Temporal Evolution of Pulsating Aurora

    Get PDF
    Pulsating aurora is a common phenomenon generally believed to occur mainly in the aftermath of a, substorm, where dim long-period pulsating patches appear. The study determines the temporal and spatial evolution of pulsating events using two THEN IIIS ASI stations, at Gillam (66.18 mlat, 332.78 mlon, magnetic midnight at 0634 UT) and Fort Smith, (67.38 mlat, 306.64 mlon, magnetic midnight at, 0806 UT) along roughly the same invariant latitude. Parameters have been calculated from a database of 74 pulsating aurora events from 119 days of good optical data within the period from September 2007 through March 2008 as identified with the Gillam camera. It is shown that the source region of pulsating aurora drifts or expands eastward, away from magnetic midnight, for pre-midnight onsets and that the spatial evolution is more complicated for post midnight onsets, which has implications for the source mechanism. The most probable duration of a pulsating aurora event is roughly 1.5 hours while the distribution of possible event durations includes many long (several hours) events. This may suggest that pulsating aurora is not strictly a substorm recovery phase phenomenon but rather a persistent, long-lived phenomenon that may be temporarily disrupted by auroral substorms. Observations from the Gillam station show that in fact, pulsating aurora is quite common with the occurrence rate increasing to around 60% for morning hours, with 6910 of pulsating aurora onsets occurring after substorm breakup

    Persistent, Widespread Pulsating Aurora: A Case Study

    Get PDF
    Observations of a pulsating aurora event occurring on February 11, 2008, using the THEMIS all-sky imager array, indicate a spatially and temporally continuous event with a duration of greater than 15 hours and covering a region with a maximum size of greater than 9 hours MLT. The optical pulsations are at times locally interrupted or drowned out by auroral substorm activity, but are observed in the same location once the discrete aurora recedes. The pulsations following the auroral breakup appear to be brighter and have a larger patch size than pre-substorm. This suggests that, while the onset of pulsating aurora is not necessarily dependent upon a substorm precursor, the pulsations are affected and possibly enhanced by the substorm process. The long duration of such pulsating aurora events, enduring for several hours without interruption, is far longer than the expected recovery phase of a substorm, suggesting that pulsating aurora is not strictly a recovery phase phenomenon

    Tidal triggering of microseismicity at the equatorial mid‐Atlantic ridge, inferred from the PI‐LAB experiment

    Get PDF
    The gravitational pulls from the moon and the sun result in tidal forces which influence both Earth's solid and water mass. These stresses are periodically added to the tectonic ones and may become sufficient for initiating rupture in fault systems critically close to failure. Previous research indicates correlations between increased seismicity rates and low tides for fast- and intermediate-spreading mid-ocean ridges in the Pacific Ocean. Here, we present a microseismicity data set (4,719 events) recorded by an ocean bottom seismometer deployment at the equatorial Mid-Atlantic Ridge. We show that low, as well as decreasing ocean water level, result in relatively elevated seismicity rates at higher magnitudes (lower b-values), translated into increased probabilities of stronger event occurrence at or towards low tides. Moreover, seismic bursts (enhanced activity rate clusters), occurring at rates well above the reference seismicity, are exclusively present during values of either high tidally induced extensional stresses or high extensional stress rates. Although the b-value differences are not significant enough to be conclusive, the seismicity rate variations exhibit statistical significance, supporting the previous findings for tidal triggering at low tides within normal-faulting regimes and extending the range of observations to slow-spreading ridges. Observed triggering of slip on low angle faults at low tides is predicted by Coulomb stress modeling. The triggering of slip on high angle faults observed here, is not easily explained without another factor. It may be related to the presence of a shallow magma body beneath the ridge, as supported by previous seismic imaging in the region

    Whole Genome Deep Sequencing of HIV-1 Reveals the Impact of Early Minor Variants Upon Immune Recognition During Acute Infection

    Get PDF
    Deep sequencing technologies have the potential to transform the study of highly variable viral pathogens by providing a rapid and cost-effective approach to sensitively characterize rapidly evolving viral quasispecies. Here, we report on a high-throughput whole HIV-1 genome deep sequencing platform that combines 454 pyrosequencing with novel assembly and variant detection algorithms. In one subject we combined these genetic data with detailed immunological analyses to comprehensively evaluate viral evolution and immune escape during the acute phase of HIV-1 infection. The majority of early, low frequency mutations represented viral adaptation to host CD8+ T cell responses, evidence of strong immune selection pressure occurring during the early decline from peak viremia. CD8+ T cell responses capable of recognizing these low frequency escape variants coincided with the selection and evolution of more effective secondary HLA-anchor escape mutations. Frequent, and in some cases rapid, reversion of transmitted mutations was also observed across the viral genome. When located within restricted CD8 epitopes these low frequency reverting mutations were sufficient to prime de novo responses to these epitopes, again illustrating the capacity of the immune response to recognize and respond to low frequency variants. More importantly, rapid viral escape from the most immunodominant CD8+ T cell responses coincided with plateauing of the initial viral load decline in this subject, suggestive of a potential link between maintenance of effective, dominant CD8 responses and the degree of early viremia reduction. We conclude that the early control of HIV-1 replication by immunodominant CD8+ T cell responses may be substantially influenced by rapid, low frequency viral adaptations not detected by conventional sequencing approaches, which warrants further investigation. These data support the critical need for vaccine-induced CD8+ T cell responses to target more highly constrained regions of the virus in order to ensure the maintenance of immunodominant CD8 responses and the sustained decline of early viremia

    Altered Immune Responses in Rhesus Macaques Co-Infected with SIV and Plasmodium cynomolgi: An Animal Model for Coincident AIDS and Relapsing Malaria

    Get PDF
    BACKGROUND:Dual epidemics of the malaria parasite Plasmodium and HIV-1 in sub-Saharan Africa and Asia present a significant risk for co-infection in these overlapping endemic regions. Recent studies of HIV/Plasmodium falciparum co-infection have reported significant interactions of these pathogens, including more rapid CD4+ T cell loss, increased viral load, increased immunosuppression, and increased episodes of clinical malaria. Here, we describe a novel rhesus macaque model for co-infection that supports and expands upon findings in human co-infection studies and can be used to identify interactions between these two pathogens. METHODOLOGY/PRINCIPAL FINDINGS:Five rhesus macaques were infected with P. cynomolgi and, following three parasite relapses, with SIV. Compared to macaques infected with SIV alone, co-infected animals had, as a group, decreased survival time and more rapid declines in markers for SIV progression, including peripheral CD4+ T cells and CD4+/CD8+ T cell ratios. The naĂŻve CD4+ T cell pool of the co-infected animals was depleted more rapidly than animals infected with SIV alone. The co-infected animals also failed to generate proliferative responses to parasitemia by CD4+ and CD8+ T cells as well as B cells while also having a less robust anti-parasite and altered anti-SIV antibody response. CONCLUSIONS/SIGNIFICANCE:These data suggest that infection with both SIV and Plasmodium enhances SIV-induced disease progression and impairs the anti-Plasmodium immune response. These data support findings in HIV/Plasmodium co-infection studies. This animal model can be used to further define impacts of lentivirus and Plasmodium co-infection and guide public health and therapeutic interventions

    Stochastic Inversion of P-to-S Converted Waves for Mantle Composition and Thermal Structure: Methodology and Application

    Get PDF
    We present a new methodology for inverting P‐to‐S receiver function (RF) waveforms directly for mantle temperature and composition. This is achieved by interfacing the geophysical inversion with self‐consistent mineral phase equilibria calculations from which rock mineralogy and its elastic properties are predicted as a function of pressure, temperature, and bulk composition. This approach anchors temperatures, composition, seismic properties, and discontinuities that are in mineral physics data, while permitting the simultaneous use of geophysical inverse methods to optimize models of seismic properties to match RF waveforms. Resultant estimates of transition zone (TZ) topography and volumetric seismic velocities are independent of tomographic models usually required for correcting for upper mantle structure. We considered two end‐member compositional models: the equilibrated equilibrium assemblage (EA) and the disequilibrated mechanical mixture (MM) models. Thermal variations were found to influence arrival times of computed RF waveforms, whereas compositional variations affected amplitudes of waves converted at the TZ discontinuities. The robustness of the inversion strategy was tested by performing a set of synthetic inversions in which crustal structure was assumed both fixed and variable. These tests indicate that unaccounted‐for crustal structure strongly affects the retrieval of mantle properties, calling for a two‐step strategy presented herein to simultaneously recover both crustal and mantle parameters. As a proof of concept, the methodology is applied to data from two stations located in the Siberian and East European continental platforms.This work was supported by a grant from the Swiss National Science Foundation (SNF project 200021_159907). B. T. was funded by a DĂ©lĂ©gation CNRS and CongĂ© pour Recherches et Conversion ThĂ©matique from the UniversitĂ© de Lyon to visit the Research School of Earth Sciences (RSES), The Australian National University (ANU). B. T. has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement 79382

    The role of neutralizing antibodies in prevention of HIV-1 infection: what can we learn from the mother-to-child transmission context?

    Get PDF
    International audienceIn most viral infections, protection through existing vaccines is linked to the presence of vaccine-induced neutralizing antibodies (NAbs). However, more than 30 years after the identification of AIDS, the design of an immunogen able to induce antibodies that would neutralize the highly diverse HIV-1 variants remains one of the most puzzling challenges of the human microbiology. The role of antibodies in protection against HIV-1 can be studied in a natural situation that is the mother-to-child transmission (MTCT) context. Indeed, at least at the end of pregnancy, maternal antibodies of the IgG class are passively transferred to the fetus protecting the neonate from new infections during the first weeks or months of life. During the last few years, strong data, presented in this review, have suggested that some NAbs might confer protection toward neonatal HIV-1 infection. In cases of transmission, it has been shown that the viral population that is transmitted from the mother to the infant is usually homogeneous, genetically restricted and resistant to the maternal HIV-1-specific antibodies. Although the breath of neutralization was not associated with protection, it has not been excluded that NAbs toward specific HIV-1 strains might be associated with a lower rate of MTCT. A better identification of the antibody specificities that could mediate protection toward MTCT of HIV-1 would provide important insights into the antibody responses that would be useful for vaccine development. The most convincing data suggesting that NAbs migh confer protection against HIV-1 infection have been obtained by experiments of passive immunization of newborn macaques with the first generation of human monoclonal broadly neutralizing antibodies (HuMoNAbs). However, these studies, which included only a few selected subtype B challenge viruses, provide data limited to protection against a very restricted number of isolates and therefore have limitations in addressing the hypervariability of HIV-1. The recent identification of highly potent second-generation cross-clade HuMoNAbs provides a new opportunity to evaluate the efficacy of passive immunization to prevent MTCT of HIV-1

    Marked seasonality and high spatial variation in estuarine ciliates are driven by exchanges between the ‘abundant’ and ‘intermediate’ biospheres

    Get PDF
    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. The file attached is the Published/publisher’s pdf version of the article

    Dependence between temperature and clearance rate of Balanion comatum Wulff

    No full text
    The dependence between temperature and clearance rate of the ciliate Balanion comatum Wulff 1919 was assessed in the coastal zone of the southern Baltic Sea. Five in situ experiments were carried out with the use of wheat starch as a surrogate of food particles. The clearance rate rose from 1.4 to 7.0 ÎŒl cell−1 h−1 with a temperature rise from 8 to 19◩C. B. comatum preferred particles of size 1.9–4.4 ÎŒm, and the clearance rates calculated for the preferred particles were consistently higher than those measured for the whole range of particles ingested (Wilcoxon’s signed rank test, p = 0.04). The exponential dependence between temperature and clearance rates for preferred particles was statistically significant (R2 = 0.86, p = 0.02) and enabled the Q10 coefficient to be calculated. This amounted to 2.9 and lay within the range of typical values. The linear dependence (also drawn for preferred particles) demonstrated a higher significance (R2 = 0.91, p = 0.02), indicating the linear dynamics of the process
    • 

    corecore