126 research outputs found
Investigation of brix refractometry for estimating bovine colostrum immunoglobulin G concentration
Many dairy operations uses a Brix refractometer to assess the quality of first-milking colostrum. This study investigated whether a digital Brix refractometer could be used in a model to predict colostrum IgG concentration and whether more than one %Brix threshold could be used for different colostrum IgG concentrations. Colostrum from 182 animals was tested using a digital Brix refractometer and by single radial immunodiffusion. Statistical analysis, using simple linear regression to relate %Brix results with corresponding colostral IgG concentration, and receiver operating characteristic (ROC) analysis were used to identify %Brix cutoffs that had no false positive results. Colostral IgG concentrations from digital Brix refractometry had a R2 value of 0.818 and a S-value of 21.7 g/L. The large S-value shows that a digital Brix refractometer should not be used in a model to predict colostrum IgG concentration. However, %Brix scores of 19.0, 22.0, 25.0 and 30.0 percent can be used to estimate minimum colostral IgG concentrations of 25, 50, 75 and 100 g/L. These four cutoffs can be used to strategically feed smaller volumes of colostrum to newborn calves. Smaller volumes may reduce unwanted side effects and shorten the time interval in which calves refuse to nurse, while still delivering an adequate mass of IgG to have successful transfer of passive immunity
Nonequilibrium Atom-Dielectric Forces Mediated by a Quantum Field
In this paper we give a first principles microphysics derivation of the
nonequilibrium forces between an atom, treated as a three dimensional harmonic
oscillator, and a bulk dielectric medium modeled as a continuous lattice of
oscillators coupled to a reservoir. We assume no direct interaction between the
atom and the medium but there exist mutual influences transmitted via a common
electromagnetic field. By employing concepts and techniques of open quantum
systems we introduce coarse-graining to the physical variables - the medium,
the quantum field and the atom's internal degrees of freedom, in that order -
to extract their averaged effects from the lowest tier progressively to the top
tier. The first tier of coarse-graining provides the averaged effect of the
medium upon the field, quantified by a complex permittivity (in the frequency
domain) describing the response of the dielectric to the field in addition to
its back action on the field through a stochastic forcing term. The last tier
of coarse- graining over the atom's internal degrees of freedom results in an
equation of motion for the atom's center of mass from which we can derive the
force on the atom. Our nonequilibrium formulation provides a fully dynamical
description of the atom's motion including back action effects from all other
relevant variables concerned. In the long-time limit we recover the known
results for the atom-dielectric force when the combined system is in
equilibrium or in a nonequilibrium stationary state.Comment: 24 pages, 2 figure
Presentation, Clinical Pathology Abnormalities, and Identification of Gastrointestinal Parasites in Camels (Camelus bactrianus and Camelus dromedarius) Presenting to Two North American Veterinary Teaching Hospitals. A Retrospective Study: 1980–2020
Old World Camelids (OWC) represent two species (Camelus bactrianus and Camelus dromedarius) with increasing numbers in North America. Gastrointestinal (GI) parasitism is a major cause of clinical disease in camelids and leads to significant economic impacts. Literature reporting on clinical parasitism of camels is localized to India, Africa, and the Middle East, with limited information available on OWCs in North America. Objectives of this study were to report on clinical presentation and diagnostic findings in Camelus bactrianus and Camelus dromedarius with GI parasitism and provide a comparative analysis between geographic regions. Medical records of OWCs presenting to two veterinary teaching hospitals (of the University of Tennessee and University of Wisconsin) were evaluated. Thirty-one camels including 11 Bactrians and six dromedaries (14 species not recorded) were included for the clinical component of this study, reporting on signalment, presenting complaint, and clinical pathology. Anorexia, weight loss, and diarrhea were the most common presenting complaint. Clinical pathology findings included eosinophilia, hypoproteinemia, and hyponatremia. For the second component of this study, a total of 77 fecal parasite examination results were evaluated for parasite identification and regional variation. Trichuris, Capillaria, Strongyloides, Nematodirus, Dictyocaulus, Moniezia, and protozoan parasites (Eimeria, Cryptosporidium, Giardia) were recorded. Strongyle-type eggs predominated, followed by Trichuris and Eimeria spp. There was a statistically significant variation in prevalence of coccidia between the two regions, with fecal examinations from Tennessee more likely to contain Eimeria (P = 0.0193). Clinicians treating camels in North America should recognize anorexia, weight loss, and diarrhea combined with clinical pathologic changes of hypoproteinemia, eosinophilia and hyponatremia as possible indications of GI parasitism. Clinicians should also consider the potential for regional variation to exist for GI parasites of camels in different areas of North America
Post-Newtonian expansion of gravitational waves from a particle in circular orbits around a rotating black hole: Up to beyond the quadrupole formula
Extending a method developed by Sasaki in the Schwarzschild case and by
Shibata, Sasaki, Tagoshi, and Tanaka in the Kerr case, we calculate the
post-Newtonian expansion of the gravitational wave luminosities from a test
particle in circular orbit around a rotating black hole up to beyond
the quadrupole formula. The orbit of a test particle is restricted on the
equatorial plane. We find that spin dependent terms appear in each
post-Newtonian order, and that at they have a significant effect on
the orbital phase evolution of coalescing compact binaries. By comparing the
post-Newtonian formula of the luminosity with numerical results we find that,
for , the spin dependent terms at and
improve the accuracy of the post-Newtonian formula significantly, but
those at do not improve.Comment: 27 pages, revtex, 6 figures, submitted to Physical Review
Non-local double-path Casimir phase in atom interferometers
We present a quantum open system theory of atom interferometers evolving in
the quantized electromagnetic field bounded by an ideal conductor. Our
treatment reveals an unprecedented feature of matter-wave propagation, namely
the appearance of a non-local double-path phase coherence. Such a non-local
phase arises from the coarse-graining over the quantized electromagnetic field
and internal atomic degrees of freedom, yielding a non-Hamiltonian evolution of
the atomic waves moving in presence of correlated quantum dipole and field
fluctuations. We develop a diagrammatic interpretation of this phase, and
estimate it for realistic experimental parameters.Comment: 5 pages, 1 figure. Final version, published in the Europhysics
Letter
Low BMI-1 expression is associated with an activated BMI-1-driven signature, vascular invasion, and hormone receptor loss in endometrial carcinoma
We studied the expression of polycomb group (PcG) protein BMI-1 in a large population-based patient series of endometrial carcinomas in relation to clinical and molecular phenotype. Also, 57 fresh frozen endometrial carcinomas were studied for the relationship between BMI-1 protein expression, BMI-1 mRNA level, and activation of an 11-gene signature reported to represent a BMI-1-driven pathway. BMI-1 protein expression was significantly weaker in tumours with vascular invasion (P<0.0001), deep myometrial infiltration (P=0.004), and loss of oestrogen receptor (ER) (P<0.0001) and progesterone receptors (PR) (P=0.03). Low BMI-1 protein expression was highly associated with low BMI-1 mRNA expression (P=0.002), and similarly low BMI-1 mRNA expression correlated significantly with vascular invasion, ER and PR loss, and histologic grade 3. In contrast, activation of the reported 11-gene signature, supposed to represent a BMI-1-driven pathway, correlated with low mRNA expression of BMI-1 (P<0.001), hormone receptor loss, presence of vascular invasion, and poor prognosis. We conclude that BMI-1 protein and mRNA expression are significantly correlated and that BMI-1 expression is inversely associated with activation of the 11-gene signature. Loss of BMI-1 seems to be associated with an aggressive phenotype in endometrial carcinomas
Extensive rewiring of the EGFR network in colorectal cancer cells expressing transforming levels of KRASG13D
Protein-protein-interaction networks (PPINs) organize fundamental biological processes, but how oncogenic mutations impact these interactions and their functions at a network-level scale is poorly understood. Here, we analyze how a common oncogenic KRAS mutation (KRASG13D) affects PPIN structure and function of the Epidermal Growth Factor Receptor (EGFR) network in colorectal cancer (CRC) cells. Mapping >6000 PPIs shows that this network is extensively rewired in cells expressing transforming levels of KRASG13D (mtKRAS). The factors driving PPIN rewiring are multifactorial including changes in protein expression and phosphorylation. Mathematical modelling also suggests that the binding dynamics of low and high affinity KRAS interactors contribute to rewiring. PPIN rewiring substantially alters the composition of protein complexes, signal flow, transcriptional regulation, and cellular phenotype. These changes are validated by targeted and global experimental analysis. Importantly, genetic alterations in the most extensively rewired PPIN nodes occur frequently in CRC and are prognostic of poor patient outcomes.This work was supported by European Union FP7 Grant No. 278568 “PRIMES” and Science Foundation Ireland Investigator Program Grant 14/IA/2395 to W.K. B.K. is supported by SmartNanoTox (Grant no. 686098), NanoCommons (Grant no. 731032), O.R. by MSCA-IF-2016 SAMNets (Grant no. 750688). D.M. is supported by Science Foundation Ireland Career Development award 15-CDA-3495. I.J. is supported by the Canada Research Chair Program (CRC #225404), Krembil Foundation, Ontario Research Fund (GL2-01-030 and #34876), Natural Sciences Research Council (NSERC #203475), Canada Foundation for Innovation (CFI #225404, #30865), and IBM. O.S. is supported by ERC investigator Award ColonCan 311301 and CRUK. I.S. is supported by the Canadian Cancer Society Research Institute (#703889), Genome Canada via Ontario Genomics (#9427 & #9428), Ontario Research fund (ORF/ DIG-501411 & RE08-009), Consortium Québécois sur la Découverte du Médicament (CQDM Quantum Leap) & Brain Canada (Quantum Leap), and CQDM Explore and OCE (#23929). T.C. was supported by a Teagasc Walsh Fellowshi
Coupled, Physics-Based Modeling Reveals Earthquake Displacements are Critical to the 2018 Palu, Sulawesi Tsunami
The September 2018, Mw 7.5 Sulawesi earthquake occurring on the Palu-Koro strike-slip fault system was followed by an unexpected localized tsunami. We show that direct earthquake-induced uplift and subsidence could have sourced the observed tsunami within Palu Bay. To this end, we use a physics-based, coupled earthquake–tsunami modeling framework tightly constrained by observations. The model combines rupture dynamics, seismic wave propagation, tsunami propagation and inundation. The earthquake scenario, featuring sustained supershear rupture propagation, matches key observed earthquake characteristics, including the moment magnitude, rupture duration, fault plane solution, teleseismic waveforms and inferred horizontal ground displacements. The remote stress regime reflecting regional transtension applied in the model produces a combination of up to 6 m left-lateral slip and up to 2 m normal slip on the straight fault segment dipping 65∘ East beneath Palu Bay. The time-dependent, 3D seafloor displacements are translated into bathymetry perturbations with a mean vertical offset of 1.5 m across the submarine fault segment. This sources a tsunami with wave amplitudes and periods that match those measured at the Pantoloan wave gauge and inundation that reproduces observations from field surveys. We conclude that a source related to earthquake displacements is probable and that landsliding may not have been the primary source of the tsunami. These results have important implications for submarine strike-slip fault systems worldwide. Physics-based modeling offers rapid response specifically in tectonic settings that are currently underrepresented in operational tsunami hazard assessment
The impact of viral mutations on recognition by SARS-CoV-2 specific T cells.
We identify amino acid variants within dominant SARS-CoV-2 T cell epitopes by interrogating global sequence data. Several variants within nucleocapsid and ORF3a epitopes have arisen independently in multiple lineages and result in loss of recognition by epitope-specific T cells assessed by IFN-γ and cytotoxic killing assays. Complete loss of T cell responsiveness was seen due to Q213K in the A∗01:01-restricted CD8+ ORF3a epitope FTSDYYQLY207-215; due to P13L, P13S, and P13T in the B∗27:05-restricted CD8+ nucleocapsid epitope QRNAPRITF9-17; and due to T362I and P365S in the A∗03:01/A∗11:01-restricted CD8+ nucleocapsid epitope KTFPPTEPK361-369. CD8+ T cell lines unable to recognize variant epitopes have diverse T cell receptor repertoires. These data demonstrate the potential for T cell evasion and highlight the need for ongoing surveillance for variants capable of escaping T cell as well as humoral immunity.This work is supported by the UK Medical Research Council (MRC); Chinese Academy of Medical Sciences(CAMS) Innovation Fund for Medical Sciences (CIFMS), China; National Institute for Health Research (NIHR)Oxford Biomedical Research Centre, and UK Researchand Innovation (UKRI)/NIHR through the UK Coro-navirus Immunology Consortium (UK-CIC). Sequencing of SARS-CoV-2 samples and collation of data wasundertaken by the COG-UK CONSORTIUM. COG-UK is supported by funding from the Medical ResearchCouncil (MRC) part of UK Research & Innovation (UKRI),the National Institute of Health Research (NIHR),and Genome Research Limited, operating as the Wellcome Sanger Institute. T.I.d.S. is supported by a Well-come Trust Intermediate Clinical Fellowship (110058/Z/15/Z). L.T. is supported by the Wellcome Trust(grant number 205228/Z/16/Z) and by theUniversity of Liverpool Centre for Excellence in Infectious DiseaseResearch (CEIDR). S.D. is funded by an NIHR GlobalResearch Professorship (NIHR300791). L.T. and S.C.M.are also supported by the U.S. Food and Drug Administration Medical Countermeasures Initiative contract75F40120C00085 and the National Institute for Health Research Health Protection Research Unit (HPRU) inEmerging and Zoonotic Infections (NIHR200907) at University of Liverpool inpartnership with Public HealthEngland (PHE), in collaboration with Liverpool School of Tropical Medicine and the University of Oxford.L.T. is based at the University of Liverpool. M.D.P. is funded by the NIHR Sheffield Biomedical ResearchCentre (BRC – IS-BRC-1215-20017). ISARIC4C is supported by the MRC (grant no MC_PC_19059). J.C.K.is a Wellcome Investigator (WT204969/Z/16/Z) and supported by NIHR Oxford Biomedical Research Centreand CIFMS. The views expressed are those of the authors and not necessarily those of the NIHR or MRC
- …