371 research outputs found

    BRIP1 (BACH1) variants and familial breast cancer risk: a case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inactivating and truncating mutations of the nuclear BRCA1-interacting protein 1 (BRIP1) have been shown to be the major cause of Fanconi anaemia and, due to subsequent alterations of BRCA1 function, predispose to breast cancer (BC).</p> <p>Methods</p> <p>We investigated the effect of BRIP1 -64G>A and Pro919Ser on familial BC risk by means of TaqMan allelic discrimination, analysing <it>BRCA1/BRCA2 </it>mutation-negative index patients of 571 German BC families and 712 control individuals.</p> <p>Results</p> <p>No significant differences in genotype frequencies between BC cases and controls for BRIP1 -64G>A and Pro919Ser were observed.</p> <p>Conclusion</p> <p>We found no effect of the putatively functional BRIP1 variants -64G>A and Pro919Ser on the risk of familial BC.</p

    Genetic variation in TIMP1 but not MMPs predict excess FEV1 decline in two general population-based cohorts

    Get PDF
    BACKGROUND: An imbalance in matrix metalloproteases (MMPs) and tissue inhibitors of MMPs (TIMPs) contributes to chronic obstructive pulmonary disease (COPD) development. Longitudinal studies investigating Single Nucleotide Polymorphisms (SNPs) in MMPs and TIMPs with respect to COPD development and lung function decline in the general population are lacking. METHODS: We genotyped SNPs in MMP1 (G-1607GG), MMP2 (-1306 C/T), MMP9 (3 tagging SNPs), MMP12 (A-82G and Asn357Ser) and TIMP1 (Phe124Phe and Ile158Ile) in 1390 Caucasians with multiple FEV1 measurements from a prospective cohort study in the general population. FEV1 decline was analyzed using linear mixed effect models adjusted for confounders. Analyses of the X-chromosomal TIMP1 gene were stratified according to sex. All significant associations were repeated in an independent general population cohort (n=1152). RESULTS: MMP2 -1306 TT genotype carriers had excess FEV1 decline (-4.0 ml/yr, p=0.03) compared to wild type carriers. TIMP1 Ile158Ile predicted significant excess FEV1 decline in both males and females. TIMP1 Phe124Phe predicted significant excess FEV1 decline in males only, which was replicated (p=0.10) in the second cohort. The MMP2 and TIMP1 Ile158Ile associations were not replicated. Although power was limited, we did not find associations with COPD development. CONCLUSIONS: We for the first time show that TIMP1 Phe124Phe contributes to excess FEV1 decline in two independent prospective cohorts, albeit not quite reaching conventional statistical significance in the replication cohort. SNPs in MMPs evidently do not contribute to FEV1 decline in the general population

    The Mitochondrial Ca(2+) Uniporter: Structure, Function, and Pharmacology.

    Get PDF
    Mitochondrial Ca(2+) uptake is crucial for an array of cellular functions while an imbalance can elicit cell death. In this chapter, we briefly reviewed the various modes of mitochondrial Ca(2+) uptake and our current understanding of mitochondrial Ca(2+) homeostasis in regards to cell physiology and pathophysiology. Further, this chapter focuses on the molecular identities, intracellular regulators as well as the pharmacology of mitochondrial Ca(2+) uniporter complex

    Serious, Minor, and Non-Delinquents in Early Adolescence: The Impact of Cumulative Risk and Promotive Factors. The TRAILS Study

    Get PDF
    This study uses a social-ecological approach to the development of delinquency. The authors emphasize that a balance between eliminating risk and enhancing protection across domains is essential in reducing problems and promoting competence. The cumulative risk and promotive effects of temperament, family and school factors in preadolescence were examined on different groups of delinquents (based on self-report) in early adolescence. Data from the first two waves of the TRAILS study (N = 2,230) were used. The results provide evidence for a compensatory model that assumes main effects of risk and promotive factors on problem behavior. Accumulation of risks in preadolescence promoted being a serious delinquent in early adolescence, with the strongest effects for temperament. Accumulation of promotive effects decreased being a delinquent and supported being a non-delinquent. Furthermore, evidence is found for a counter-balancing effect of cumulative promotive and risk factors. Exposure to more promotive domains in the relative absence of risk domains decreased the percentage of serious delinquents. Our results did not support a protective model. Implications for prevention and intervention are discussed

    The impact of Mendelian sleep and circadian genetic variants in a population setting.

    Get PDF
    This is the final version. Available from Public Library of Science via the DOI in this record. Data cannot be shared publicly because of data availability and data return policies of the UK Biobank. Data are available from the UK Biobank for researchers who meet the criteria for access to datasets to UK Biobank (http://www.ukbiobank.ac.uk)Rare variants in ten genes have been reported to cause Mendelian sleep conditions characterised by extreme sleep duration or timing. These include familial natural short sleep (ADRB1, DEC2/BHLHE41, GRM1 and NPSR1), advanced sleep phase (PER2, PER3, CRY2, CSNK1D and TIMELESS) and delayed sleep phase (CRY1). The association of variants in these genes with extreme sleep conditions were usually based on clinically ascertained families, and their effects when identified in the population are unknown. We aimed to determine the effects of these variants on sleep traits in large population-based cohorts. We performed genetic association analysis of variants previously reported to be causal for Mendelian sleep and circadian conditions. Analyses were performed using 191,929 individuals with data on sleep and whole-exome or genome-sequence data from 4 population-based studies: UK Biobank, FINRISK, Health-2000-2001, and the Multi-Ethnic Study of Atherosclerosis (MESA). We identified sleep disorders from self-report, hospital and primary care data. We estimated sleep duration and timing measures from self-report and accelerometery data. We identified carriers for 10 out of 12 previously reported pathogenic variants for 8 of the 10 genes. They ranged in frequency from 1 individual with the variant in CSNK1D to 1,574 individuals with a reported variant in the PER3 gene in the UK Biobank. No carriers for variants reported in NPSR1 or PER2 were identified. We found no association between variants analyzed and extreme sleep or circadian phenotypes. Using sleep timing as a proxy measure for sleep phase, only PER3 and CRY1 variants demonstrated association with earlier and later sleep timing, respectively; however, the magnitude of effect was smaller than previously reported (sleep midpoint ~7 mins earlier and ~5 mins later, respectively). We also performed burden tests of protein truncating (PTVs) or rare missense variants for the 10 genes. Only PTVs in PER2 and PER3 were associated with a relevant trait (for example, 64 individuals with a PTV in PER2 had an odds ratio of 4.4 for being "definitely a morning person", P = 4x10-8; and had a 57-minute earlier midpoint sleep, P = 5x10-7). Our results indicate that previously reported variants for Mendelian sleep and circadian conditions are often not highly penetrant when ascertained incidentally from the general population.Medical Research CouncilAcademy of Medical Sciences / the Wellcome Trust / the Government Department of Business, Energy and Industrial Strategy / the British Heart Foundation / Diabetes UK Springboard AwardMedical Research Counci

    Genome-wide association analysis of self-reported daytime sleepiness identifies 42 loci that suggest biological subtypes

    Get PDF
    This is the final version. Available from the publisher via the DOI in this record.UK Biobank Sleep Traits GWAS summary statistics are available at the Sleep Disorder Knowledge Portal (SDKP) website (http://www.sleepdisordergenetics.org). All other data are contained within the article and its supplementary information or available upon request.Excessive daytime sleepiness (EDS) affects 10–20% of the population and is associated with substantial functional deficits. Here, we identify 42 loci for self-reported daytime sleepiness in GWAS of 452,071 individuals from the UK Biobank, with enrichment for genes expressed in brain tissues and in neuronal transmission pathways. We confirm the aggregate effect of a genetic risk score of 42 SNPs on daytime sleepiness in independent Scandinavian cohorts and on other sleep disorders (restless legs syndrome, insomnia) and sleep traits (duration, chronotype, accelerometer-derived sleep efficiency and daytime naps or inactivity). However, individual daytime sleepiness signals vary in their associations with objective short vs long sleep, and with markers of sleep continuity. The 42 sleepiness variants primarily cluster into two predominant composite biological subtypes - sleep propensity and sleep fragmentation. Shared genetic links are also seen with obesity, coronary heart disease, psychiatric diseases, cognitive traits and reproductive ageing.Medical Research Council (MRC

    Intrinsic genetic characteristics determine tumor-modifying capacity of fibroblasts: matrix metalloproteinase-3 5A/5A genotype enhances breast cancer cell invasion

    Get PDF
    Background Stromal fibroblasts can contribute to tumor invasion through the release of matrix metalloproteinases (MMPs). Population studies have suggested that single nucleotide polymorphisms (SNPs) in MMP genes influence levels of expression and may be associated with breast cancer risk and with disease progression. This study directly examined the impact of MMP SNP genotype on the ability of host fibroblasts to promote tumor cell invasion. Methods Primary breast fibroblasts were isolated from patients with (n = 13) or without (n = 19) breast cancer, and their ability to promote breast cancer cell invasion was measured in in vitro invasion assays. Fibroblast invasion-promoting capacity (IPC) was analyzed in relation to donor type (tumor or non-tumor patient), MMP-1, MMP-3, and MMP-9 SNP genotype and MMP activity using independent samples t test and analysis of variance. All statistical tests were two-sided. Results Tumor-derived fibroblasts promoted higher levels of invasion than normal fibroblasts (p = 0.041). When IPC was related to genotype, higher levels of IPC were generated by tumor fibroblasts with the high-expressing MMP-3 5A/5A genotype compared with the 5A/6A and 6A/6A genotypes (p = 0.05 and 0.07, respectively), and this was associated with enhanced MMP-3 release. The functional importance of MMP-3 was demonstrated by enhanced invasion in the presence of recombinant MMP-3, whereas reduction occurred in the presence of a specific MMP-3 inhibitor. An inverse relationship was demonstrated between fibroblast IPC and the high-expressing MMP-1 genotype (p = 0.031), but no relationship was seen with MMP-9 SNP status. In contrast, normal fibroblasts showed no variation in IPC in relation to MMP genotype, with MMP-3 5A/5A fibroblasts exhibiting significantly lower levels of IPC than their tumor-derived counterparts (p = 0.04). Conclusion This study has shown that tumor-derived fibroblasts exhibit higher levels of IPC than normal fibroblasts and that the MMP-3 5A/5A genotype contributes to this through enhanced MMP-3 release. Despite a high-expressing genotype, normal fibroblasts do not exhibit higher IPC or enhanced MMP release. This suggests that more complex changes occur in tumor-derived fibroblasts, enabling full expression of the MMP SNP genotype and these possibly are epigenetic in nature. The results do suggest that, in women with breast cancer, a high-expressing MMP-3 genotype may promote tumor progression more effectively
    corecore