7 research outputs found

    Persistent changes in spinal cord gene expression after recovery from inflammatory hyperalgesia: A preliminary study on pain memory

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous studies found that rats subjected to carrageenan injection develop hyperalgesia, and despite complete recovery in several days, they continue to have an enhanced hyperalgesic response to a new noxious challenge for more than 28d. The study's aim was to identify candidate genes that have a role in the formation of the long-term hyperalgesia-related imprint in the spinal cord. This objective was undertaken with the understanding that the long-lasting imprint of acute pain in the central nervous system may contribute to the transition of acute pain to chronicity.</p> <p>Results</p> <p>To analyze changes in gene expression when carrageenan-induced hyperalgesia has disappeared but propensity for the enhanced hyperalgesic response is still present, we determined the gene expression profile using oligo microarray in the lumbar part of the spinal cord in three groups of rats: 28d after carrageenan injection, 24h after injection (the peak of inflammation), and with no injection (control group). Out of 17,000 annotated genes, 356 were found to be differentially expressed compared with the control group at 28d, and 329 at 24h after carrageenan injection (both groups at p < 0.01). Among differentially expressed genes, 67 (39 in 28d group) were identified as being part of pain-related pathways, altered in different models of pain, or interacting with proteins involved in pain-related pathways. Using gene ontology (GO) classification, we have identified 3 functional classes deserving attention for possible association with pain memory: They are related to cell-to-cell interaction, synaptogenesis, and neurogenesis.</p> <p>Conclusion</p> <p>Despite recovery from inflammatory hyperalgesia, persistent changes in spinal cord gene expression may underlie the propensity for the enhanced hyperalgesic response. We suggest that lasting changes in expression of genes involved in the formation of new synapses and neurogenesis may contribute to the transition of acute pain to chronicity.</p

    NIDES: A Summary

    No full text
    We have reported previously that LXRα can mediate a novel cAMP dependent increase in renin and c-myc gene transcription by binding as a monomer to a unique regulatory element, termed the CNRE. To determine if this novel action of LXRα has global implications on gene regulation, we employed expression profiling to identify other genes regulated by this unique mechanism. Here we report the existence of a set of known and unknown transcripts regulated in parallel with renin. Querying the Celera Mouse Genome Assembly revealed that a majority of these genes contained the consensus CNRE. We have confirmed the functionality of these CNREs by competition for LXRα binding via EMSA assays, and by the use of CNRE decoy molecules documenting the abolishment of the cAMP-mediated gene induction. Taken together, these results demonstrate that the interaction between cAMP-activated LXRα and the CNRE enhancer element is responsible for widespread changes in gene expression and identify a set of LXRα/cAMP regulated genes that may have important biological implications. 2 Running Title: LXRα Regulated Genes in As4.1 cell
    corecore