1,039 research outputs found

    It's all in the eyes: subcortical and cortical activation during grotesqueness perception in autism

    Get PDF
    Atypical face processing plays a key role in social interaction difficulties encountered by individuals with autism. In the current fMRI study, the Thatcher illusion was used to investigate several aspects of face processing in 20 young adults with high-functioning autism spectrum disorder (ASD) and 20 matched neurotypical controls. “Thatcherized” stimuli were modified at either the eyes or the mouth and participants discriminated between pairs of faces while cued to attend to either of these features in upright and inverted orientation. Behavioral data confirmed sensitivity to the illusion and intact configural processing in ASD. Directing attention towards the eyes vs. the mouth in upright faces in ASD led to (1) improved discrimination accuracy; (2) increased activation in areas involved in social and emotional processing; (3) increased activation in subcortical face-processing areas. Our findings show that when explicitly cued to attend to the eyes, activation of cortical areas involved in face processing, including its social and emotional aspects, can be enhanced in autism. This suggests that impairments in face processing in autism may be caused by a deficit in social attention, and that giving specific cues to attend to the eye-region when performing behavioral therapies aimed at improving social skills may result in a better outcome

    Dynamic Energy Budget models: fertile ground for understanding resource allocation in plants in a changing world

    Get PDF
    Climate change is having dramatic effects on the diversity and distribution of species. Many of these effects are mediated by how an organism’s physiological patterns of resource allocation translate into fitness through effects on growth, survival and reproduction. Empirically, resource allocation is challenging to measure directly and so has often been approached using mathematical models, such as Dynamic Energy Budget (DEB) models. The fact that all plants require a very similar set of exogenous resources, namely light, water and nutrients, integrates well with the DEB framework in which a small number of variables and processes linked through pathways represent an organism’s state as it changes through time. Most DEB theory has been developed in reference to animals and microorganisms. However, terrestrial vascular plants differ from these organisms in fundamental ways that make resource allocation, and the trade-offs and feedbacks arising from it, particularly fundamental to their life histories, but also challenging to represent using existing DEB theory. Here, we describe key features of the anatomy, morphology, physiology, biochemistry, and ecology of terrestrial vascular plants that should be considered in the development of a generic DEB model for plants. We then describe possible approaches to doing so using existing DEB theory and point out features that may require significant development for DEB theory to accommodate them. We end by presenting a generic DEB model for plants that accounts for many of these key features and describing gaps that would need to be addressed for DEB theory to predict the responses of plants to climate change. DEB models offer a powerful and generalizable framework for modelling resource allocation in terrestrial vascular plants, and our review contributes a framework for expansion and development of DEB theory to address how plants respond to anthropogenic change

    The European Federation of Organisations for Medical Physics (EFOMP) White Paper : Big data and deep learning in medical imaging and in relation to medical physics profession

    Get PDF
    Big data and deep learning will profoundly change various areas of professions and research in the future. This will also happen in medicine and medical imaging in particular. As medical physicists, we should pursue beyond the concept of technical quality to extend our methodology and competence towards measuring and optimising the diagnostic value in terms of how it is connected to care outcome. Functional implementation of such methodology requires data processing utilities starting from data collection and management and culminating in the data analysis methods. Data quality control and validation are prerequisites for the deep learning application in order to provide reliable further analysis, classification, interpretation, probabilistic and predictive modelling from the vast heterogeneous big data. Challenges in practical data analytics relate to both horizontal and longitudinal analysis aspects. Quantitative aspects of data validation, quality control, physically meaningful measures, parameter connections and system modelling for the future artificial intelligence (AI) methods are positioned firmly in the field of Medical Physics profession. It is our interest to ensure that our professional education, continuous training and competence will follow this significant global development.Peer reviewe

    Quantum Black Hole Evaporation

    Full text link
    We investigate a recently proposed model for a full quantum description of two-dimensional black hole evaporation, in which a reflecting boundary condition is imposed in the strong coupling region. It is shown that in this model each initial state is mapped to a well-defined asymptotic out-state, provided one performs a certain projection in the gravitational zero mode sector. We find that for an incoming localized energy pulse, the corresponding out-going state contains approximately thermal radiation, in accordance with semi-classical predictions. In addition, our model allows for certain acausal strong coupling effects near the singularity, that give rise to corrections to the Hawking spectrum and restore the coherence of the out-state. To an asymptotic observer these corrections appear to originate from behind the receding apparent horizon and start to influence the out-going state long before the black hole has emitted most of its mass. Finally, by putting the system in a finite box, we are able to derive some algebraic properties of the scattering matrix and prove that the final state contains all initial information.Comment: 37 pages (figs 2 and 3 included as uuencoded compressed tar file), Latex, needs epsf.tex, PUPT-1395, IASSNS-HEP-93/25 (revised version has minor corrections, one reference added

    Vor den Toren von Vindonissa. Wohnen und Arbeiten in einem Handwerkerquartier in den canabae des Legionslagers (Windisch Zivilsiedlung West 2006 – 2008)

    Get PDF
    Erstmals erlaubt die Teilauswertung einer grossflĂ€chigen Ausgrabung einen vertieften Einblick in Entwicklung und Struktur der canabae legionis von Vindonissa. Im Westen des Lagers wurde um 30/40 n. Chr. ein römisches GrĂ€berfeld aufgehoben, das GelĂ€nde wird neu parzelliert und zĂŒgig ĂŒberbaut. Ein Grossbrand um 70 n. Chr zerstört das gesamte Quartier. Die GebĂ€ude werden kurz nach 106 n. Chr. verlassen – annĂ€hernd gleichzeitig mit der Ankunft der XI. Legion in ihrem neuen Lager in Durostorum. Die Bewohner sind Handwerker – etwa Schmiede und Gerber. Sie dĂŒrften vorwiegend fĂŒr das Lager produziert haben. Die von Legionsstandorten sonst bekannte SiedlungsdualitĂ€t mit canabae legionis und vicus scheint fĂŒr Vindonissa nicht zu existieren – die Zivilsiedlung ist insgesamt als canabae anzusprechen

    Climate and landscape changes enhance the global spread of a bloom-forming dinoflagellate related to fish kills and water quality deterioration

    Get PDF
    Global inland water biodiversity is under mounting stress facing future scenarios of climate change, biological invasions, pollution, diversion, damming of rivers, and increase of water abstractions. Apart from having isolated effects, all these stressors threats act synergistically and thus pose additional emerging threats to biodiversity and ecosystem services. Native to Northern Europe, the nuisance and potential toxic dinoflagellate Ceratium furcoides (Levander) Langhans 1925 is a silent invader that blooms in freshwater systems; it has one of the most rapid spread rates globally. We propose a framework to determine the worldwide most vulnerable areas for the invasion by C. furcoides shortly (2041-2060) by combining future scenarios of climate change (a proxy for invasiveness) derived from ecological niche models with future dam construction data (a proxy for invasibility). The nine models applied in four future scenarios of greenhouse gas emission from Coupled Model Intercomparison Project Phase 6 showed a general increase in areas suitable for the invasion success of C. furcoides. High susceptibility overlapped with areas densely occupied by large and medium-size dams and future dam construction projects. Considering that C. furcoides can reproduce from a single cell, produces resistant stages, and has several strategies to cope with local environmental constraints, early detection protocols, and mitigation actions are urgently needed to avoid biodiversity declines related to this invader.Peer reviewe
    • 

    corecore