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A B S T R A C T

Big data and deep learning will profoundly change various areas of professions and research in the future. This will also happen in medicine and medical imaging in
particular. As medical physicists, we should pursue beyond the concept of technical quality to extend our methodology and competence towards measuring and
optimising the diagnostic value in terms of how it is connected to care outcome. Functional implementation of such methodology requires data processing utilities
starting from data collection and management and culminating in the data analysis methods. Data quality control and validation are prerequisites for the deep
learning application in order to provide reliable further analysis, classification, interpretation, probabilistic and predictive modelling from the vast heterogeneous big
data. Challenges in practical data analytics relate to both horizontal and longitudinal analysis aspects. Quantitative aspects of data validation, quality control,
physically meaningful measures, parameter connections and system modelling for the future artificial intelligence (AI) methods are positioned firmly in the field of
Medical Physics profession. It is our interest to ensure that our professional education, continuous training and competence will follow this significant global
development.

1. Introduction

The remarkable increases in data volume, variety, and velocity
(speed of data processing), collectively called the ‘3 V’s of big data’,
present vast opportunities to achieve insights, derive knowledge, and
stimulate new discoveries that will result in improved patient out-
comes, reduced costs, and accelerated biomedical advances. It is esti-
mated that a total of 2.5 quintillion (1018) bytes of data were generated
every day in 2012 alone, and that as much data is now created in just
2 days as was accumulated from the beginning of civilization until the
year 2003 [1]. Big data can be harnessed to promote new applications
raising from clinical research studies and implement those in the real-
world scenarios where population heterogeneity may create challenges
for traditional approaches. It may allow new possibilities for early di-
agnoses and more effective treatments and precision medicine by en-
abling patient stratification which is a key task when pursuing perso-
nalized healthcare [2]. Researchers have already studied these new
methods in healthcare with encouraging results in automated image
analysis tasks [3], and in detecting specific pathologies and diseases
[4,5].

Artificial intelligence (AI) originally referred to an area of science
where machines performed tasks which would typically require human
intelligence [6]. Further on, machine learning (ML) can be seen as a
subset of AI methodology which seeks to derive data-driven decisions
by using models built from large-scale training data [7]. Therefore, ML
may enable outcome prediction on new data purely based on earlier
training data without explicit previous programming or expert-defined
feature models. In other words, it learns by generalising results and
patterns from experience [8]. ML algorithms can be divided into su-
pervised, unsupervised, reinforced and transfer learning depending of
the training method [9]. In supervised learning, the training inputs are
given together with known (labeled) ground-truth or target values in
order to guide the building of the ML outcome prediction model. In

unsupervised learning, the algorithm seeks the patterns in the given
training data without labeled outputs. Reinforced learning approaches
adjust the prediction model along the way by using feedback to steer
the long-term goal of the prediction. Finally, transfer learning may be
applied when there is only a small amount of training data from the
actual task scenario. Then, a pre-trained algorithm from another pre-
diction task may be used for the new task, by performing an additional
training part to fine-tune the earlier outcome prediction model to be
more suitable for a new task. Moving along the hierarchy of ML
methods, deep learning (DL) forms a subset of ML where the abstraction
level of the data is increased gradually in various cascaded signal
processing layers in a neural network architecture, allowing higher
level features to be created from the original input data for the final
prediction task. When combined with representative and large enough
training data, the DL methods, especially convolutional neural net-
works (CNN), have proven to be highly efficient and more accurate than
earlier AI methods e.g. for image classification tasks [10]. The success
of DL can be traced to its architecture, utilisation of high computing
power on graphics processing units (GPU) based platforms, and a large
amount of training data [8]. An extensive review by Litjens 2017 cov-
ered more than 300 papers in this field, showing how DL solutions are
spreading into every aspect of radiological image analysis. Further-
more, this development has occurred very quickly as most of the studies
were published only recently, in 2016 or 2017 [11,8].

A number of DL architectures has been applied to medical image
analysis. The first studies in this area were using pre-trained CNNs
mainly for feature extraction tasks. The possibility to simply download
already existing pre-trained networks has also helped to adapt them to
new medical image applications. Furthermore, previously used feature-
based methods could be elaborated further on deep networks with more
extended set of features [11,12]. DL methods have already been used
successfully on various radiological imaging modalities such as mam-
mography [13,14], computed tomography (CT) [15] and magnetic
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resonance imaging [16,17]. Also techniques outside traditional medical
imaging with static data, such as signal distributions from magneto-
encephalography and electro-encephalography, have been targeted
with new deep learning platforms [18,19]. During the past few years,
the use of DL methods has been developed further to the direction of
end-to-end trained CNNs which have become the most promising ap-
proach for medical image interpretation. While envisioning larger scope
applications in the clinical environment, such CNNs could be further
integrated into conventional diagnostic processes to upgrade their ex-
isting methodologies [11].

DL methods can be used generically for a large number of tasks in
medical imaging, also covering image production steps such as image
reconstruction. Therefore, these techniques and applications will not
only have a potential impact in image analysis, but in the entire medical
imaging and healthcare [20,21,11,12,22,23,24,25,8,26]. The main
challenge in the clinical applications of this area is the detection of
tissue or organ abnormality. The algorithms must be able to detect the
lesions accurately and precisely, in order to provide consistent clinical
performance. Various clinical trials and medical imaging analysis re-
search studies will be needed to validate these learning algorithmic
methods.

At a general level, AI applications in healthcare can work in synergy
with the exponential growth of healthcare data to create insights for
better-informed decisions. These should ultimately lead to improved
quality and safety of healthcare, and reduction of costs by enabling care
to be more preventive and personalized. Discovering associations and
identifying patterns and trends within the healthcare data can help to
improve care processes, save lives, and lower the long-term costs. The
means to utilise real-time analytics against a high volume of hetero-
geneous data (including structured, unstructured, and semi-structured)
on-line and across all specialties would revolutionize healthcare [2,24].

2. Need for deep learning approach in medical imaging

ML has been used increasingly in radiology because typical imaging
objects such as lesions and organs presented in medical images are in
most occasions far too complex to be represented reliably by a certain
simple equation or hand-crafted model. Such simple models, and the
simple features calculated from them, cannot generally provide the
discrimination power to reliably detect and classify objects of interest in
individual patient images with variable indications [27]. Since there is
large individual and case-specific variability of normal tissue and lesion
representation in radiological images (including variability in size,
shape, location, position, edge profile, contrast, texture and noise in
target and background), robust analysis method (with inclusion of a
large amount of features from a large amount of heterogeneous data) is
a fundamental requirement. Consequently, such analysis task cannot be
successfully simplified or confined by any traditional analytical or rule-
based approach [11,27].

The large number of parameters involved in the ML methods has to
be determined directly from the data instead of manual operation. In
order to find the most relevant high-level abstraction of the imaging
task metrics, DL process will go through several layer transformations
of the data [28,2,8]. These layered transformations include also several
non-linear phases and the overall process can be applied to an end-to-
end image analysis – from images used as an input to the final result
(e.g. classification task). Accordingly, it may also avoid errors caused by
the conventional feature extraction and segmentation methods, which
face challenges and inaccuracies for subtle or complex object detection
and classification from clinical data [27,2,8].

3. Link to radiological optimisation, quality assurance and
patient-specific dosimetry

New radiological imaging technology, reconstruction and post-
processing techniques provide new and mostly non-linear image

output. An example of this development is the iterative reconstruction
in CT, as compared to the traditional filtered back-projection re-
construction method. These new methods also call for more versatile
description of clinically relevant image quality, preferably by objective
quantification to enable consistent method for image analysis [29].

Improvement in radiological optimisation requires patient-specific
and indication-specific adjustment of imaging parameters and image
analysis methods. One size and purpose simply does not fit all patients
and applications. This is particularly important in high radiation dose
modalities such as CT or fluoroscopy used in interventional therapeutic
procedures.

Both of these aspects – nonlinearity and patient/indication specifi-
city – aim to improve diagnostic information content and representa-
tion of task-specific image features in radiology.

However, what is actually most relevant and more comprehensive,
is the effectiveness of the diagnostics for the clinical outcome.
Therefore, on a broader context, we need to develop methods to mea-
sure this effectiveness. To do that, objective, quantitative and measur-
able connections from diagnostic optimisation parameters to clinical
outcome parameters need to be developed.

The required metrics involve combining several types of data to-
gether for more comprehensive analysis, as also described in a recent
publication from an international summit [30] describing the optimi-
sation process. Accordingly, the comprehensive optimisation process
should include the combined risk factors from clinical aspects and ra-
diation dose. To provide effective and patient specific risk – or benefit –
assessment, the radiation risk models and clinical image quality defi-
nition could be determined further by utilising clinical data channels
such as previous radiology findings, lab results, genetic data and other
clinical information [30]. DL methods are prerequisites for this kind of
data analysis due to inherent non-linearity of the problem and large
amount of heterogeneous data which is not equitable by traditional
methods [11,27].

In addition to the optimisation, also quality assurance (QA) and
patient-specific dosimetry would benefit and evolve by utilising AI
methods. As the QA pursues higher efficacy through more explicit
connections to diagnostic process and vendor-specific technical para-
meters, the AI approach may provide means to utilise this increasing
pool of data for improved usage, performance monitoring, cost effi-
ciency and access of the imaging equipment [2,4]. Furthermore, ex-
tending from standard dosimetry parameters to include image data and
clinical parameters has significant potential to boost accuracy and ro-
bustness of patient-specific dosimetry which is pivotal for future patient
and indication-specific optimisation process. There is already an initial
published study aiming towards DL-based organ dosimetry [31]. Still,
literature is scarce regarding the use of these algorithms in dosimetry or
QA. Recently, Valdes et al. 2017 as well as Interian et al. 2018 explored
the use of such algorithms in intensity-modulated radiation therapy QA
with promising results [32,33].

4. Challenges in deep learning AI

The healthcare information technology environment and its pro-
cesses have not evolved in the same open manner as the Internet. On
the contrary, our PACS (Picture archiving and communication system)
and EMR (electronic medical record) in hospitals and clinics are in most
cases operating independently of each other and their data is main-
tained in separate silos [34]. Even within a certain medical discipline
and department in a single hospital, the essential information is in
many cases “hidden” in a separate system due to the lack of procedures
for integrating data and communicating findings more comprehen-
sively. Therefore, there are still great challenges to leverage the full
potential of the data which actually may already exist, but without
effective utilisation in larger context [2]. This potential may be true
also for the sole use of medical image data. The large coverage, accu-
racy and volume provided by the current 3D medical imaging
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modalities includes vast amount of phenotype data from the patients
which can be used to extract relevant biomarkers even linked to mor-
tality [35].

Efficient access to the data for the ML methods calls for minimized
bureaucracy but also secured patient confidentiality and privacy ac-
cording to ethical and legislative requirements. Related challenges in-
volve creation of privacy, security and layered access to protected non-
de-identified or partially de-identified health information. This also
includes ethical challenges related to the specific patient consent to
data sharing. To meet these challenges, data privacy algorithms con-
forming to human subject protection legislation and approvable by
institutional review boards have to be created and factored into de-
velopment of data research infrastructures. This kind of fundamental
technical, safety, legislative and process related development of tech-
nologies and infrastructures will require inter-organisational and mul-
tidisciplinary cooperation among governmental agencies, scientists,
healthcare providers, companies and other interested parties [2].

In addition to the previously stated medico-legal and ethical chal-
lenges, the technical challenges in the utilisation of big data with ML
methods are related to the data itself. Big imaging and dose data may
contain a considerable amount of imprecise, incomplete or ambiguous
data. Unreliable data collection systems, disorganized data manage-
ment, human errors, biases, software bugs can lead to inaccurate results
and wrong decisions. Even though the ML methods may be intrinsically
robust to various uncertainties in the input data, there is still great need
for data validation and standardisation. If and when there are un-
certainties in the data, the knowledge of such uncertainties in various
data channels will help in the analysis tasks by defining the confidence
of typical data values and the outliers. In other words, more accurately
and precisely defined input data can lead to more effective outcome.
The need for validation is emphasized in the correctly defined outcome
values and image annotations in the training and validation data when
developing and verifying new ML methods for clinical use.

In summary, two main challenges can be clearly observed in ac-
quiring the required training data for DL based AI and medical image
analysis: 1) gaining access to medical archives, located in closed pro-
prietary databases in hospitals with privacy regulations impeding dis-
tribution and access to the data, and 2) obtaining validated and anno-
tated image data in a systematic fashion (data values themselves,
heterogeneity of the data sources, and provision of data labeling)
[11,2,36,8,26].

5. How can medical physicists start to prepare?

An immense progress in technology offered by recent AI methods
opens new horizons in the field of medical imaging and in under-
standing and management of diseases. New methods of early diagnosis
and treatment which can be tailored to each particular individual and
specific clinical problem are approaching fast. In medical imaging,
these methods are referred to as radiomics, defined as ‘the high-
throughput mining of quantitative image features from standard-of-care
medical imaging that enables data to be extracted and applied within
clinical-decision support systems to improve diagnostic, prognostic, and
predictive accuracy’ [37]. These and other AI-based methods need a
multidisciplinary approach. Medical physicists should develop new AI
techniques for medical imaging and cooperate with clinicians to
translate research results into clinical practice [38].

Although AI may replace several routine tasks related to medical
physicist work in the future, as discussed in recent point/counterpoint
publications [39,40], it will also generate new ones [41]. There is a
transition in our role towards more comprehensive expertise and
clinically relevant impact from our knowledge [42,43]. It means a
change of focus from equipment to operation; from quality to con-
sistency of quality, from testing performance to estimating outcome –
and doing this with objective, standardisable and quantitative methods
[44]. This general professional trend will hold regardless of AI methods

but the development and implementation of AI will advance this trend
in new directions. Big data validation and data QA in medical imaging
will soon become a critical issue in research and everyday clinical
practice. Therefore, medical physicists should develop big data QA
programs in their field of expertise to assess data veracity and validity
using metrics such as data completeness, data accuracy, data correct-
ness, data consistency and perform data cleaning activities. Each
channel of quantitative data must be properly calibrated and associated
with the valid physical quantity and unit prefix to provide correct input
to the following analysis. Understanding of uncertainties in quantitative
values, including estimates of accuracy and precision, forms a pre-
requisite for this process. These foundations of data fidelity are clearly
within medical physicist professional area and our field of knowledge.

In order to secure our field of knowledge also in the future, medical
physicists must be prepared for facing the AI technology by updating
our training and education programs [40,41]. Currently there is a lack
of courses, workshops and other scientific events that can educate
medical physicists efficiently on issues related to big data, DL, ML, or on
AI in general. Medical Physics academic or educational programs (such
as bachelor, master or doctorate) should include these new fields in
their core curriculum. Within the scope of EFOMP, this kind of edu-
cation could be provided by the ESMPE (European School of Medical
Physics Expert) course modules which are organized regularly in order
to provide basic and advanced training for medical physicists on an
international level.

The changes induced by the technological transformation also effect
the collaboration and working culture between professions. The next
generation of medical physicists must be prepared to work in an in-
creasingly multidisciplinary clinical environment in which professional
boundaries and borders between diagnostics and treatment processes
are increasingly blurred and overlapping. In that mixed field of ex-
pertise, medical physicists could be the connecting point among dif-
ferent professionals (e.g. clinicians, bio-engineers and biomedical in-
formatics specialists) provided they are well educated and carefully
trained in the revised processes of translation of all these potential
benefits of AI into clinical practice. The need for specialised profes-
sional knowledge will not disappear. Thorough medical physics ex-
pertise must meet with clinical knowledge of medical doctors and
radiologists, and combine with skills of computer scientists. The role of
computer scientists to provide expertise on big data architectures, im-
plementations and adaptation of new IT services to support AI appli-
cations will be a prominent part of this collaboration. This combination
of knowledge is essential to build capabilities to work with the mix of
healthcare processes, medical technology and increasing availability of
healthcare data. Our community should be prepared to meet the new
challenges and opportunities and to take a prominent role in this new
wave of the fourth industrial revolution extending well beyond medical
physics and healthcare [40,41].
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