15 research outputs found

    Novel point mutations attenuate autotaxin activity

    Get PDF
    BACKGROUND: The secreted enzyme autotaxin (ATX) stimulates tumor cell migration, tumorigenesis, angiogenesis, and metastasis. ATX hydrolyzes nucleotides, but its hydrolysis of lysophospholipids to produce lysophosphatidic acid (LPA) accounts for its biological activities. ATX has been identified only as a constitutively active enzyme, and regulation of its activity is largely unexplored. In spite of its presence in plasma along with abundant putative substrate LPC, the product LPA is found in plasma at unexpectedly low concentrations. It is plausible that the LPA-producing activity of ATX is regulated by its expression and by access to substrate(s). For this reason studying the interaction of enzyme with substrate is paramount to understanding the regulation of LPA production. RESULTS: In this study we determine ATX hydrolytic activities toward several artificial and natural substrates. Two novel point mutations near the enzyme active site (H226Q and H434Q) confer attenuated activity toward all substrates tested. The Vmax for LPC compounds depends upon chain length and saturation; but this order does not differ among wild type and mutants. However the mutant forms show disproportionately low activity toward two artificial substrates, pNpTMP and FS-3. The mutant forms did not significantly stimulate migration responses at concentrations that produced a maximum response for WT-ATX, but this defect could be rescued by inclusion of exogenous LPC. CONCLUSION: H226Q-ATX and H434Q-ATX are the first point mutations of ATX/NPP2 demonstrated to differentially impair substrate hydrolysis, with hydrolysis of artificial substrates being disproportionately lower than that of LPC. This implies that H226 and H434 are important for substrate interaction. Assays that rely on hydrolyses of artificial substrates (FS-3 and pNpTMP), or that rely on hydrolysis of cell-derived substrate, might fail to detect certain mutated forms of ATX that are nonetheless capable of producing LPA in the presence of sufficient exogenous substrate. H420Q-ATX could not be differentiated from WT-ATX, indicating that histidine at position 420 is not required for any of the activities of ATX tested in this studyope

    L-histidine inhibits production of lysophosphatidic acid by the tumor-associated cytokine, autotaxin

    Get PDF
    BACKGROUND: Autotaxin (ATX, NPP-2), originally purified as a potent tumor cell motility factor, is now known to be the long-sought plasma lysophospholipase D (LPLD). The integrity of the enzymatic active site, including three crucial histidine moieties, is required for motility stimulation, as well as LPLD and 5'nucleotide phosphodiesterase (PDE) activities. Except for relatively non-specific chelation agents, there are no known inhibitors of the ATX LPLD activity. RESULTS: We show that millimolar concentrations of L-histidine inhibit ATX-stimulated but not LPA-stimulated motility in two tumor cell lines, as well as inhibiting enzymatic activities. Inhibition is reversed by 20-fold lower concentrations of zinc salt. L-histidine has no significant effect on the Km of LPLD, but reduces the Vmax by greater than 50%, acting as a non-competitive inhibitor. Several histidine analogs also inhibit the LPLD activity of ATX; however, none has greater potency than L-histidine and all decrease cell viability or adhesion. CONCLUSION: L-histidine inhibition of LPLD is not a simple stoichiometric chelation of metal ions but is more likely a complex interaction with a variety of moieties, including the metal cation, at or near the active site. The inhibitory effect of L-histidine requires all three major functional groups of histidine: the alpha amino group, the alpha carboxyl group, and the metal-binding imidazole side chain. Because of LPA's involvement in pathological processes, regulation of its formation by ATX may give insight into possible novel therapeutic approaches

    Analysis of albumin-associated peptides and proteins from ovarian cancer patients

    Get PDF
    Albumin binds low–molecular-weight molecules, including proteins and peptides, which then acquire its longer half-life, thereby protecting the bound species from kidney clearance. We developed an experimental method to isolate albumin in its native state and to then identify [mass spectrometry (MS) sequencing] the corresponding bound low–molecular-weight molecules. We used this method to analyze pooled sera from a human disease study set (high-risk persons without cancer, n= 40; stage I ovarian cancer, n = 30; stage III ovarian cancer, n = 40) to demonstrate the feasibility of this approach as a discovery method. Methods Albumin was isolated by solid-phase affinity capture under native binding and washing conditions. Captured albumin-associated proteins and peptides were separated by gel electrophoresis and subjected to iterative MS sequencing by microcapillary reversed-phase tandem MS. Selected albumin-bound protein fragments were confirmed in human sera by Western blotting and immunocompetition. Results In total, 1208 individual protein sequences were predicted from all 3 pools. The predicted sequences were largely fragments derived from proteins with diverse biological functions. More than one third of these fragments were identified by multiple peptide sequences, and more than one half of the identified species were in vivo cleavage products of parent proteins. An estimated 700 serum peptides or proteins were predicted that had not been reported in previous serum databases. Several proteolytic fragments of larger molecules that may be cancer-related were confirmed immunologically in blood by Western blotting and peptide immunocompetition. BRCA2, a 390-kDa low-abundance nuclear protein linked to cancer susceptibility, was represented in sera as a series of specific fragments bound to albumin. Conclusion Carrier-protein harvesting provides a rich source of candidate peptides and proteins with potential diverse tissue and cellular origins that may reflect important disease-related information

    Carba analogs of cyclic phosphatidic acid are selective inhibitors of autotaxin and cancer cell invasion and metastasis

    No full text
    Autotaxin (ATX, nucleotide pyrophosphate/phosphodiesterase-2) is an autocrine motility factor initially characterized from A2058 melanoma cell-conditioned medium. ATX is known to contribute to cancer cell survival, growth, and invasion. Recently ATX was shown to be responsible for the lysophospholipase D activity that generates lysophosphatidic acid (LPA). Production of LPA is sufficient to explain the effects of ATX on tumor cells. Cyclic phosphatidic acid (cPA) is a naturally occurring analog of LPA in which the sn-2 hydroxy group forms a 5-membered ring with the sn-3 phosphate. Cellular responses to cPA generally oppose those of LPA despite activation of apparently overlapping receptor populations, suggesting that cPA also activates cellular targets distinct from LPA receptors. cPA has previously been shown to inhibit tumor cell invasion in vitro and cancer cell metastasis in vivo. However, the mechanism governing this effect remains unresolved. Here we show that 3-carba analogs of cPA lack significant agonist activity at LPA receptors yet are potent inhibitors of ATX activity, LPA production, and A2058 melanoma cell invasion in vitro and B16F10 melanoma cell metastasis in vivo

    IL-4 protein expression and basal activation of Erk in vivo in follicular lymphoma

    No full text
    Follicular lymphoma (FL) is characterized by constitutive expression of Bcl-2 as a consequence of t(14;18). Evidence suggests factors in the lymph node microenvironment, related to intratumoral T cells, macrophages, and dendritic cells, play a role in the disease process. We generated proteomic cytokine profiles of FL (N = 50) and follicular hyperplasia (FH; N = 23). A total of 10 cytokines were assayed using ultrasensitive multiplex enzyme-linked immunosorbent assays: IL-1β, IL-2, IL-4, IL-5, IL-8, IL-10, IL-13, IL-12p70, tumor necrosis factor-α, and interferon-γ. Each cytokine showed overall lower protein concentrations in FL, with the exception of IL-4, which was nearly 5 times higher in FL than FH (P = .005). Using reverse-phase protein microarrays (RPMAs), we evaluated the activation state of several intracellular signaling proteins downstream of cytokine receptors. Basal Erk phosphorylation was approximately 4 times greater in FL than FH (P < .001), with similar findings for Mek; Stat-6 showed weak basal phosphorylation that was approximately twice as high in FL than in FH (P = .012). In conclusion, the FL microenvironment contains increased levels of IL-4, with prominent tumor basal phosphorylation of Erk. These findings suggest IL-4, Erk, and possibly Stat-6 may play a role in the biology of FL and may serve as targets for future therapies

    Global Regulation of Promoter Melting in Naive Lymphocytes

    Get PDF
    SummaryLymphocyte activation is initiated by a global increase in messenger RNA synthesis. However, the mechanisms driving transcriptome amplification during the immune response are unknown. By monitoring single-stranded DNA genome wide, we show that the genome of naive cells is poised for rapid activation. In G0, ∼90% of promoters from genes to be expressed in cycling lymphocytes are polymerase loaded but unmelted and support only basal transcription. Furthermore, the transition from abortive to productive elongation is kinetically limiting, causing polymerases to accumulate nearer to transcription start sites. Resting lymphocytes also limit the expression of the transcription factor IIH complex, including XPB and XPD helicases involved in promoter melting and open complex extension. To date, two rate-limiting steps have been shown to control global gene expression in eukaryotes: preinitiation complex assembly and polymerase pausing. Our studies identify promoter melting as a third key regulatory step and propose that this mechanism ensures a prompt lymphocyte response to invading pathogens
    corecore