229 research outputs found

    Diterpene modulator of macrophage phagosomal maturation

    Get PDF
    Novel uses for diterpene modulators of macrophage phagosomal maturation are provided. The diterpene isotuberculosinol is used as an immune modulator, assay for pharmaceutical compositions and an isolated Mycobacterium tuberculosis labdane-related diterpenoid virulence factor. A method of treating Mycobacterium tuberculosis infectivity is further provided

    Language-Guided Audio-Visual Source Separation via Trimodal Consistency

    Full text link
    We propose a self-supervised approach for learning to perform audio source separation in videos based on natural language queries, using only unlabeled video and audio pairs as training data. A key challenge in this task is learning to associate the linguistic description of a sound-emitting object to its visual features and the corresponding components of the audio waveform, all without access to annotations during training. To overcome this challenge, we adapt off-the-shelf vision-language foundation models to provide pseudo-target supervision via two novel loss functions and encourage a stronger alignment between the audio, visual and natural language modalities. During inference, our approach can separate sounds given text, video and audio input, or given text and audio input alone. We demonstrate the effectiveness of our self-supervised approach on three audio-visual separation datasets, including MUSIC, SOLOS and AudioSet, where we outperform state-of-the-art strongly supervised approaches despite not using object detectors or text labels during training.Comment: Accepted at CVPR 202

    The Building Blocks of Interoperability. A Multisite Analysis of Patient Demographic Attributes Available for Matching.

    Get PDF
    BackgroundPatient matching is a key barrier to achieving interoperability. Patient demographic elements must be consistently collected over time and region to be valuable elements for patient matching.ObjectivesWe sought to determine what patient demographic attributes are collected at multiple institutions in the United States and see how their availability changes over time and across clinical sites.MethodsWe compiled a list of 36 demographic elements that stakeholders previously identified as essential patient demographic attributes that should be collected for the purpose of linking patient records. We studied a convenience sample of 9 health care systems from geographically distinct sites around the country. We identified changes in the availability of individual patient demographic attributes over time and across clinical sites.ResultsSeveral attributes were consistently available over the study period (2005-2014) including last name (99.96%), first name (99.95%), date of birth (98.82%), gender/sex (99.73%), postal code (94.71%), and full street address (94.65%). Other attributes changed significantly from 2005-2014: Social security number (SSN) availability declined from 83.3% to 50.44% (p<0.0001). Email address availability increased from 8.94% up to 54% availability (p<0.0001). Work phone number increased from 20.61% to 52.33% (p<0.0001).ConclusionsOverall, first name, last name, date of birth, gender/sex and address were widely collected across institutional sites and over time. Availability of emerging attributes such as email and phone numbers are increasing while SSN use is declining. Understanding the relative availability of patient attributes can inform strategies for optimal matching in healthcare

    Zoledronic acid inhibits macrophage SOCS3 expression and enhances cytokine production

    Full text link
    Suppressor of cytokine signaling‐3 (SOCS3) has multiple functions including inhibition of Janus kinase (Jak) activity, regulation of protein degradation, and suppression of cytokine signaling. SOCS3 modulates macrophage response to cytokines such as IL‐6 and leptin that are systemically induced in obesity. Obesity is a suspected risk factor for SOCS3‐related pathology such as rheumatoid arthritis and Crohn's disease as well as zoledronic acid (ZA)‐induced osteonecrosis of the jaw (ONJ). Thus, understanding the ability of bisphosphonates to modulate SOCS3 is necessary to qualify their contribution to these disorders. ONJ occurs in up to 10% of patients using intravenous bisphosphonates and has an unknown pathogenesis that may be linked to decreased bone turnover, altered vascularity, bacterial invasion, and compromised wound healing. Given the increased risk of ONJ with obesity and importance of macrophages in wound healing, we hypothesized that amino‐bisphosphonates could contribute to the pathogenesis of ONJ by regulating macrophage responses to cytokines such as leptin and IL‐6. We report that ZA is a novel inhibitor of SOCS3 in primary macrophages and human ONJ biopsy specimens. Inhibition of SOCS3 by ZA resulted in significant increases in IL‐6 production. SOCS3 transcription is regulated by nuclear accumulation of phosphorylated‐Stat3 (P‐Stat3). We found that ZA decreased phosphorylation of Stat3 in a mevalonate‐pathway dependent manner. However, restoration of P‐Stat3 was not sufficient to correct SOCS3 inhibition. We propose that disruption of macrophage SOCS3 expression by amino‐bisphosphonates such as ZA may be a novel contributor to inflammatory phenotypes in obesity and the pathogenesis of ONJ. J. Cell. Biochem. 112: 3364–3372, 2011. © 2011 Wiley Periodicals, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87102/1/23267_ftp.pd

    Lobular Carcinomas In Situ Display Intralesion Genetic Heterogeneity and Clonal Evolution in the Progression to Invasive Lobular Carcinoma

    Get PDF
    Purpose:; Lobular carcinoma; in situ; (LCIS) is a preinvasive lesion of the breast. We sought to define its genomic landscape, whether intralesion genetic heterogeneity is present in LCIS, and the clonal relatedness between LCIS and invasive breast cancers.; Experimental Design:; We reanalyzed whole-exome sequencing (WES) data and performed a targeted amplicon sequencing validation of mutations identified in 43 LCIS and 27 synchronous more clinically advanced lesions from 24 patients [9 ductal carcinomas; in situ; (DCIS), 13 invasive lobular carcinomas (ILC), and 5 invasive ductal carcinomas (IDC)]. Somatic genetic alterations, mutational signatures, clonal composition, and phylogenetic trees were defined using validated computational methods.; Results:; WES of 43 LCIS lesions revealed a genomic profile similar to that previously reported for ILCs, with; CDH1; mutations present in 81% of the lesions. Forty-two percent (18/43) of LCIS were found to be clonally related to synchronous DCIS and/or ILCs, with clonal evolutionary patterns indicative of clonal selection and/or parallel/branched progression. Intralesion genetic heterogeneity was higher among LCIS clonally related to DCIS/ILC than in those nonclonally related to DCIS/ILC. A shift from aging to APOBEC-related mutational processes was observed in the progression from LCIS to DCIS and/or ILC in a subset of cases.; Conclusions:; Our findings support the contention that LCIS has a repertoire of somatic genetic alterations similar to that of ILCs, and likely constitutes a nonobligate precursor of breast cancer. Intralesion genetic heterogeneity is observed in LCIS and should be considered in studies aiming to develop biomarkers of progression from LCIS to more advanced lesions

    Short-term treatment with multi-drug regimens combining BRAF/MEK-targeted therapy and immunotherapy results in durable responses in Braf-mutated melanoma

    Get PDF
    Targeted and immunotherapy regimens have revolutionized the treatment of advanced melanoma patients. Despite this, only a subset of patients respond durably. Recently, combination strategies of BRAF/MEK inhibitors with immune checkpoint inhibitor monotherapy (α-CTLA-4 or α-PD-1) have increased the rate of durable responses. Based on evidence from our group and others, these therapies appear synergistic, but at the cost of significant toxicity. We know from other treatment paradigms (e.g. hematologic malignancies) that combination strategies with multi-drug regimens (\u3e4 drugs) are associated with more durable disease control. To better understand the mechanism of these improved outcomes, and to identify and prioritize new strategies for testing, we studied several multi-drug regimens combining BRAF/MEK targeted therapy and immunotherapy combinations in a Braf-mutant murine melanoma model (BrafV600E/Pten−/−). Short-term treatment with α-PD-1 and α-CTLA-4 monotherapies were relatively ineffective, while treatment with α-OX40 demonstrated some efficacy [17% of mice with no evidence of disease, (NED), at 60-days]. Outcomes were improved in the combined α-OX40/α-PD-1 group (42% NED). Short-term treatment with quadruplet therapy of immunotherapy doublets in combination with targeted therapy [dabrafenib and trametinib (DT)] was associated with excellent tumor control, with 100% of mice having NED after combined DT/α-CTLA-4/α-PD-1 or DT/α-OX40/α-PD-1. Notably, tumors from mice in these groups demonstrated a high proportion of effector memory T cells, and immunologic memory was maintained with tumor re-challenge. Together, these data provide important evidence regarding the potential utility of multi-drug therapy in treating advanced melanoma and suggest these models can be used to guide and prioritize combinatorial treatment strategies

    Iowa Climate Statement 2020: Will COVID-19 Lessons Help Us Survive Climate Change?

    Get PDF
    The current SARS-CoV2 pandemic is a social, humanitarian, and economic crisis that was predicted by experts but made worse by a failure to act proactively on those warnings. As scientists teaching and studying climate and its impacts, we believe there are three important lessons from the current pandemic that apply to our understanding of climate mitigation and adaptation in Iowa

    Evolutionarily conserved and non-conserved retrovirus restriction activities of artiodactyl APOBEC3F proteins

    Get PDF
    The APOBEC3 proteins are unique to mammals. Many inhibit retrovirus infection through a cDNA cytosine deamination mechanism. HIV-1 neutralizes this host defense through Vif, which triggers APOBEC3 ubiquitination and degradation. Here, we report an APOBEC3F-like, double deaminase domain protein from three artiodactyls: cattle, pigs and sheep. Like their human counterparts, APOBEC3F and APOBEC3G, the artiodactyl APOBEC3F proteins are DNA cytosine deaminases that locate predominantly to the cytosol and can inhibit the replication of HIV-1 and MLV. Retrovirus restriction is attributable to deaminase-dependent and -independent mechanisms, as deaminase-defective mutants retain significant anti-retroviral activity. However, unlike human APOBEC3F and APOBEC3G, the artiodactyl APOBEC3F proteins have an active N-terminal DNA cytosine deaminase domain, which elicits a broader dinucleotide deamination preference, and they are resistant to HIV-1 Vif. These data indicate that DNA cytosine deamination; sub-cellular localization and retrovirus restriction activities are conserved in mammals, whereas active site location, local mutational preferences and Vif susceptibility are not. Together, these studies indicate that some properties of the mammal-specific, APOBEC3-dependent retroelement restriction system are necessary and conserved, but others are simultaneously modular and highly adaptable
    corecore